SOUTHWEST EXETER SPECIFIC PLAN . . . A NEW PLANNING MODEL FOR THE VALLEY
SOUTHWEST EXETER SPECIFIC PLAN . . . A NEW PLANNING MODEL FOR THE VALLEY

COLLINS & SCHOETTLE, PLANNING CONSULTANTS

2005
Table of Contents

Chapter One - Introduction

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>1-2</td>
</tr>
<tr>
<td>A New Planning Model for the Valley</td>
<td>1-2</td>
</tr>
<tr>
<td>Citizen Involvement</td>
<td>1-8</td>
</tr>
<tr>
<td>The Planning Area</td>
<td>1-8</td>
</tr>
<tr>
<td>Jurisdiction</td>
<td>1-9</td>
</tr>
<tr>
<td>Historical Background</td>
<td>1-9</td>
</tr>
<tr>
<td>The Planning Area and the Exeter General Plan</td>
<td>1-10</td>
</tr>
<tr>
<td>The Planning Area and Exeter</td>
<td>1-13</td>
</tr>
<tr>
<td>The Planning Period</td>
<td>1-13</td>
</tr>
<tr>
<td>Using the Specific Plan</td>
<td>1-13</td>
</tr>
<tr>
<td>Specific Plan Format</td>
<td>1-14</td>
</tr>
<tr>
<td>What is a Specific Plan?</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Chapter Two - Exeter

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>2-1</td>
</tr>
<tr>
<td>History</td>
<td>2-1</td>
</tr>
<tr>
<td>Demographics</td>
<td>2-3</td>
</tr>
<tr>
<td>Housing</td>
<td>2-4</td>
</tr>
<tr>
<td>Land Use</td>
<td>2-5</td>
</tr>
</tbody>
</table>

Chapter Three - Existing Conditions

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use</td>
<td>3-1</td>
</tr>
<tr>
<td>Circulation</td>
<td>3-2</td>
</tr>
<tr>
<td>Climate</td>
<td>3-3</td>
</tr>
<tr>
<td>Topography</td>
<td>3-3</td>
</tr>
</tbody>
</table>
Soils
Flooding
Biotic Resources
Hydrology
Agricultural Preserves
Infrastructure
 Sewer
 Water
 Storm Drainage

CHAPTER FOUR - PROBLEMS & OPPORTUNITIES

Topic One: Density
Topic Two: Connectivity
Topic Three: Open Space
Topic Four: Circulation
Topic Five: Infrastructure
Topic Six: Energy Conservation
Topic Seven: Solid Waste Reduction
Topic Eight: Water Conservation
Topic Nine: Air Quality
Topic Ten: Design Elements
Topic Eleven: Residential Architectural Styles
Topic Twelve: Residential Design Guidelines & Development Standards

CHAPTER FIVE - GOALS, OBJECTIVES, POLICIES & ACTIONS

Introduction
Goal
Objectives
Policies and Actions
CHAPTER SIX - CIRCULATION AND TRANSPORTATION ELEMENT

Introduction 6-1

Circulation
 Arterial Streets 6-2
 Collector Streets 6-3
 Local Streets 6-4
 Lanes 6-5
 Sidewalks 6-5
 Locust-Grove Trail 6-6
 Medians, Roundabouts, Bulbouts, Entryways and Crosswalks 6-6
 School Safety Improvements 6-9
 Transit 6-10

CHAPTER SEVEN - LAND USE ELEMENT

Introduction 7-1

Land Use 7-1

Sub-Planning Areas
 Visalia Road Corridor 7-4
 Cottage Neighborhoods 7-4
 Traditional Neighborhoods 7-7
 Parks 7-9

Phasing 7-9

CHAPTER EIGHT - INFRASTRUCTURE ELEMENT

Introduction 8-1

Storm Drainage 8-1
Water 8-3
Sewer 8-3
Energy 8-4
Communications 8-4
CHAPTER NINE - IMPLEMENTATION ELEMENT

Introduction 9-1
Zoning and Planned Unit Developments 9-1
Consistency 9-2
Processing 9-2
Preparation of Plans 9-3
Financing 9-3
Maintenance 9-4
Amendments 9-5

CHAPTER TEN - DESIGN GUIDELINES AND DEVELOPMENT STANDARDS

Introduction 10-1
Purpose 10-1
Design Goals, Objectives and Policies of the Southwest Exeter Specific Plan 10-2
Design Guidelines and Development Standards 10-3
Chapter Organization 10-4
General Site Design 10-4
Building and Site Improvements
 General Building Design, Excluding Single Family Residential 10-6
 Single Family Residential
 Cottage Homes 10-7
 Traditional Neighborhood Homes 10-10
 Estate Homes 10-12
 Multi-Family Residential
 Duplex, Triplex and Four-Plex Units 10-14
 Apartments/Condominiums 10-16
 Commercial and Office Buildings 10-20
 Schools 10-21
 Parks 10-23
Non-Building Improvements

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial Roadway</td>
<td>10-25</td>
</tr>
<tr>
<td>Collector Roadways</td>
<td>10-26</td>
</tr>
<tr>
<td>Local Roadways</td>
<td>10-28</td>
</tr>
<tr>
<td>Lanes</td>
<td>10-29</td>
</tr>
<tr>
<td>Sidewalks</td>
<td>10-30</td>
</tr>
<tr>
<td>Parkways and Medians</td>
<td>10-31</td>
</tr>
<tr>
<td>Locust-Grove Trail</td>
<td>10-31</td>
</tr>
<tr>
<td>Roundabouts, Bulbouts and Raised Crosswalks</td>
<td>10-32</td>
</tr>
<tr>
<td>Entryway Features, Fences and Walls</td>
<td>10-33</td>
</tr>
<tr>
<td>Street Lights</td>
<td>10-34</td>
</tr>
<tr>
<td>Street Trees, Landscaping and Irrigation</td>
<td>10-34</td>
</tr>
<tr>
<td>Parking Lots</td>
<td>10-35</td>
</tr>
</tbody>
</table>
EXHIBITS

EXHIBIT NO.	TITLE	PAGE
1 | Regional Location |
2 | Planning Area |
3 | Planning Lines |
4 | Exeter General Plan |
5 | Planning Area and the City of Exeter |
6 | Land Use |
7 | Topography |
8 | Agricultural Preserves |
9 | Existing Sewer |
10 | Existing Water |
11 | Existing Storm Drainage |
12 | Land Use/Circulation Plan |

TABLES

TABLE NO.	TITLE	PAGE
1 | Density of Selected Cities | 4-3
2 | Hydrologic Function of Land Use Patterns | 4-30
3 | Exeter: Residential Solid Waste Stream | 4-36
4 | Travel Patterns in Tulare County | 4-41
5 | Land Use Categories and Statistical Data | NA

FIGURES

FIGURE NO.	TITLE	PAGE
1 | Population | 2-3
2 | Types of Housing Units | 2-5
3 | Alley-Loaded Cottage Homes | 7-5
4 | Zero-Lot Line Cottage Homes | 7-6
5 | Traditional Homes with Recessed Garages | 7-7
Zero-Lot Line Homes with Recessed Garages 7-8
Cottage Homes Development Standards after 10-7
Traditional Homes Development Standards after 10-10
Estate Homes Development Standards after 10-12
Duplex, Tri-plex and Four-plex Units after 10-14
Arterial Roadway 10-25
Collector Roadways (north/south boulevards) 10-26
Collector Roadway – Firebaugh Avenue 10-27
Collector Roadway – Elberta, Glaze, Powell, Fairway, and Chestnut) 10-27
Local Roadways 10-28
Lanes 10-29
Locust-Grove Trail 10-32

APPENDICES

<table>
<thead>
<tr>
<th>APPENDICE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Specific Plan Evaluation Form</td>
<td>A-1</td>
</tr>
<tr>
<td>B</td>
<td>Specific Plan Landscaping Standards</td>
<td>B-1</td>
</tr>
<tr>
<td>C</td>
<td>Residential Architectural Standards</td>
<td>C-1</td>
</tr>
</tbody>
</table>
Exeter will utilize a unique planning model in the formulation of the Southwest Exeter Specific Plan. The model will be based on four primary principles - 1) it will be citizen-centered by encouraging citizen involvement in the plan’s preparation; 2) it will be conservation-centered by reducing the environmental impacts caused by urban development; 3) it will be community-centered by insuring that urban development occurring within the planning area is in concert with the values of the community as a whole; and 4) it will be context-centered by recognizing the traditions, history and culture of Exeter.

The Southwest Exeter Specific Plan is based on four primary principles. It will be citizen-centered; conservation-centered; community-centered and context-centered.
Given that current planning laws and principals practiced in this country have done little to prevent urban sprawl, maintain viable downtowns, reduce air pollution, preserve agricultural land or conserve natural resources, the authors of this specific plan felt that the pursuit of a new planning model for the Valley was timely and necessary, especially given the recent growth pressures experienced by this region.

Why should we plan? Most planners would respond with, “to protect the public’s health, safety and welfare.” The Practice of Local Government Planning, known as the big green book by planners, expanded on this answer - the protection of health, pluralism, and individuality; the conservation of resources; the promotion of efficiency, beauty, and social equity; and the advancement of the democratic process (1)

We believe, however, a better and more fundamental reason for why we plan is found in the word “ecology” coined by Earnest Haeckle in 1864. This word stems from two Greek words: oikos, meaning “house or home” and logos, meaning “study of.” Ecology is a science - the study of organisms and how they function and interact with their environment. Human ecology is the study of man and how he functions and interacts with his environment (2).

The application of ecology occurs often in the planning process. For example, a proposed residential development on the outskirts of a city in the Central Valley would be studied by planners to determine the development’s impact on the environment (air, water and land). These findings would be detailed in a report called an environmental impact report or EIR. The planners would also determine if the project was consistent with the city’s general plan and zoning
ordinance. Unfortunately, these reports and findings accomplish little in terms of preserving the environment, forwarding good planning principles, enhancing the community or fostering good urban design. The reason for this failure is that planners are generally more focused on the process and less focused on the product. Planners are more concerned with insuring that the development complies with zoning ordinance standards, that the development’s environment impact report was properly circulated and that the staff report contained the necessary conditions of approval. These tasks are all important but they are more about the process and less about the product, they are more about sales, bed, and property taxes and less about the long-term viability of the environment.

As planners, it is time to embrace the line of thinking put forth by Aldo Leopold when he coined the phrase “science of land” – a blend of planning and ecology. For this specific plan to provide true solutions to our “land” problems, the authors contend that planning must first and foremost be grounded in ecology and community values, and secondarily in the codes and standards of planning documents.

James R. Karr in his article What from Ecology Is Relevant to Design and Planning?, provides an excellent explanation of the relationship between planning and ecology.

“Infusing the design and planning disciplines with ecological thinking is crucial because designers and planners, as disciplinary generalists and integrators, work at the interface of many disciplines. From the design of buildings to
growth management and landscape design, ecological considerations impose constraints. But they also offer inspiration. The efficiency of ecological systems is unparalleled. Recycling is standard in those closed systems; waste does not occur. Air and water are not fouled in ways that cause biological collapse. The beauty of plants and animals and the views of sweeping landscapes also inspire humans. But those systems are collapsing, largely because of human’s own actions, the most important force for change on the surface of Earth today.

For the twenty-first century, we need a new science and art of home maintenance (the original meaning of economy), one that helps us understand and interpret the consequences of human-driven change. We need a new view of design and planning’s purpose. We must seek a balance between our modern industrial economy - and the designs that support it - and our homelands’ natural economies. As individuals and as societies, we need to understand the consequences of our actions for the present and the future, ecological thinking is and will be central to attaining that goal”. (3)

Garrett Hardin in 1968 wrote an article entitled, “Tragedy of the Commons” wherein he defined the commons as any resource shared by a group of people. Hardin described how a tragedy in the commons occurs with the following explanation:

“Each entity (person, household, organization or company) has the right to take resources from, or put wastes into the commons. Each entity believes that it can acquire one unit of resources or dump one unit of waste while distributing one unit of cost across all of the entities with whom the commons is shared. To each entity the gain appears large while the cost, which is spread among all entities is small. Many entities attempt to accumulate greater gains (wealth) while paying less than their fair share of the costs. Eventually, when too many entities are taking resources from the commons or disposing wastes into the commons, the commons collapses.”(4)

An article in the Visalia Times Delta, dated October 11, 2001, elaborated on the Valley’s water commons.
ONE - INTRODUCTION

“Water pollution in the San Joaquin Valley is getting worse, according to a report by the Regional Water Quality Control Board. The list of the Valley’s most polluted waterways includes every stream and river in the San Joaquin-Sacramento Delta region. Every stream on the list in San Joaquin County has more than one pollutant, which range from mercury to household insecticides and pose health threats to humans and wildlife.

In the past three years, 56 waterways have been added to the list compiled by the Regional Quality Control Board, while only three have been removed. The State’s Clean Water Act requires a list of polluted waterways to determine which need to be studied further for clean-up.”

The eight-county San Joaquin Valley contains booming metropolitan areas—notably centered on Fresno, Bakersfield, and Visalia. It is one of California’s most rapidly growing subregions, adding over one million residents in the 10 years between 1990 and 2000, a gain of almost 38 percent. By 2010, the Valley is expected to add a million persons, bringing the total to 4,899,000 residents. The Los Angeles Times reported in an article entitled, Choice for 21st Century: Keep Farming or Build Homes, that the Central Valley since 1984 has seen a net loss of 260,000 acres of agricultural land (153,600 in the San Joaquin Valley), and that over the next 40 years, another 2.5 million acres would be urbanized, representing one-third of the best agricultural land in the Central Valley. In regards to this potential impact on farmland the article stated:

“If the state doesn’t find a novel way to manage growth here, they say, it will have major repercussions for a nation that has spent billions transforming the region from desert and marsh into an agricultural colossus providing 25 percent of America’s table food.

“There are no more Central Valleys combining its endless soil and sun, at least not on this side of the U.S.-Mexican border.” said Carol Whiteside, the former mayor of Modesto.”
ONE - INTRODUCTION

Even the small town of Exeter has fostered farmland conversion. Exeter, located in the citrus belt of California, has converted about 300 acres to urban uses — schools, residential subdivisions, service commercial and industrial uses — since 1980.

Bad air is suspected as a trigger for everything from asthma to birth defects, it reduces the productivity of many of the Valley’s crops and it could eventually choke the Valley’s economy by tarnishing its image as a healthy place to live or raise a family. An article from the Fresno Bee, dated January 6, 2002, entitled Valley tops L.A. as bad-air king, focused on the Valley’s air commons.

“By at least one measure, the San Joaquin Valley now has the worst air in the country. The Valley last year violated the federal eight-hour ozone standard 101 times — one more than than the Los Angeles area’s South Coast Air Basin. It’s the first time the Valley has ever recorded more annual ozone violations than South Coast, which has been the nation’s worst air basin for decades.”

The Central Valley has many “commons”. We drink from a common aquifer, we breathe from a common basin of air and we reside on the same plain of land. If we in the Central Valley are going to successfully avoid what Hardin describes as the “tragedy of the commons”, we must make planning decisions that are based on sound science and intelligent planning principals. Unfortunately, past decisions on the use of land in the Valley has been based on vested interests, economic gain, outdated planning principals and ill-conceived design standards. Few decisions have been based on the “science of land.” We must embrace a new planning model in the Valley if we are to avoid the land use decisions that furnished us with the planning models displayed in the San Fernando and Santa Clara Valleys, Orange County and the Inland Empire.
One - Introduction

The Central Valley has many “commons” - air, land, and water.

Most urban development in California, and specifically in the Central Valley, creates more problems than it solves - air pollution, urban sprawl, traffic congestion, loss of agricultural land, and overdraft of the aquifer. The Arapahoe Indians embraced the wise notion that decisions should be based on the impact it has on the future - the seventh generation. The Southwest Exeter Specific Plan...a new planning model for the Valley is grounded in this notion. It is the goal of this Plan to cause planners, decision-makers and the general public to think differently about how we plan for ourselves and future generations.

The Southwest Exeter Specific Plan will strive to solve more problems than it creates. This plan is based on one of the fundamental principals of ecology - everything is connected to everything else and that failure to understand this principal leads to “tragedy in the commons ”.

The Southwest Exeter Specific Plan is based on one of the fundamental principals of ecology - “everything is connected to everything else and that failure to understand this principal leads to “tragedy in the commons ”.

Garrett Hardin
CITIZEN INVOLVEMENT

The Exeter City Council wanted Exeter citizens to take an active role in the preparation of the Southwest Exeter Specific Plan. Towards this end, the Council formed a citizens advisory committee to assist and guide staff in the preparation of the plan. The Committee met once a month for a year. At each meeting issue papers were presented to the Committee by the staff. Often these papers were accompanied by a power point presentation to show visual images of the topic being discussed. Once the discussion on each topic had been concluded, the Committee was asked to review the staff’s recommendations on the topic and forge a position. This position guided staff in the drafting of policy, development standards and design guidelines that became a part of the Southwest Exeter Specific Plan.

THE PLANNING AREA

The Southwest Exeter Specific Plan Area is located in the southwest quadrant of Exeter, approximately one mile west of State Route 65, two miles south of State Route 198 and ten miles east of Visalia, the county seat of Tulare County (see Exhibit 1).

The planning area is delineated by Visalia Road on the north, Belmont Road on the east, the southerly extension of Elberta Road on the west and the westerly extension of Glaze Avenue on the south (see Exhibit 2). It contains approximately 320 acres, a half section of land. Less than one percent of the planning area has been developed. Most of the land is under agricultural production.
ONE - INTRODUCTION

JURISDICTION

Presently only about 37 acres of the 320-acre planning area is inside the Exeter city limits. The balance is in the County of Tulare. Development of county land will require annexation into Exeter and detachment from the County of Tulare. Presently, the use of county land is regulated by the Tulare County Zoning Ordinance. Most of the planning area is currently zoned AE-20 (exclusive agriculture, 20-acre minimum). This zone district permits all types of agricultural uses and many agriculturally-related uses with a conditional use permit.

Approximately 35 percent of the planning area is outside the city’s Urban Development Boundary (UDB) line, defined as a 20-year growth line. For this land to be developed, Exeter will be required to file for an amendment of this line through the Tulare County Local Agency Formation Commission (LAFCO).

HISTORICAL BACKGROUND

The idea for the Southwest Exeter Specific Plan originated in Exeter’s General Plan Update, 2000 to 2020. Exeter has always had a strong desire to manage its growth, using general plan policies, zoning and growth lines. The use of the specific plan as a planning tool to pilot Exeter’s future growth is consistent with its past commitment of effective growth management.

In 1974, the County of Tulare adopted the Urban Boundaries Element, which delineated Urban Improvement Area (UIA) and Urban Area Boundary (UAB) lines around the city. In 1983, the UIA was replaced with a 20-year growth boundary line, termed the Urban Development Boundary (UDB) line. These lines
prevented urban sprawl in the county’s eight incorporated cities as well as protecting agricultural land from urbanization.

In 1990, the City of Exeter adopted its own growth boundary line, called the 10-year Annexation Line (see Exhibit 3). Land could not be annexed beyond this line until the inventory of residentially designated land fell below a specific threshold. As of late 2004, a substantial portion of the residential land within the 10-year annexation line had been developed - 266 acres of residential land since 1990 resulting in 670 single family dwellings and 70 multi-family residential units.

Entering 2005, only 60 acres of land inside the 10-year annexation line remains undeveloped. The Exeter City Council has anticipated the short fall of vacant residential land inside the line and has directed staff to prepare the Southwest Exeter Specific Plan, which will accommodate Exeter’s next round of residential growth.

THE PLANNING AREA AND THE EXETER GENERAL PLAN

The Southwest Exeter Specific Plan serves to more specifically implement many of the goals, policies and action programs contained in the Exeter General Plan, adopted in 2003 (see Exhibit 4). Adoption of the Specific Plan will serve to amend the General Plan as it pertains to the Specific Plan planning area. An abbreviated list of General Plan goals that will be implemented by the Specific Plan are highlighted below.

Growth Management - Promote Smart Growth planning principals in order to discourage urban sprawl and the premature urbanization of agricultural land.

Housing Element - Promote equal access to safe and decent housing for all
ONE - INTRODUCTION

economic groups.

Infrastructure - Insure infrastructure master plans and the general plan are in concert with each other.

Natural Resources - Promote energy and water conservation.

Agriculture - Preserve land in agriculture that is outside the 10-year planning area until development is appropriate.

Residential Neighborhoods - Promote attractive, well-maintained and designed residential neighborhoods.

Commercial Development - Encourage commercial development to be pedestrian-oriented.

Schools - Schools that are easily accessible and free from land use and circulation conflicts.

Traffic - Insure that streets and intersections in Exeter are not congested.

School Routes - Provide direct routes to school from adjoining neighborhoods.

Street Design - Develop streets that are well designed and visually pleasing.

Intersections - Seek innovative methods of controlling traffic at busy intersections.

Alternative Modes of Transportation - Promote alternative modes of transportation, including bicycles, buses, trains and walking.

Bikepaths and Pedestrian Pathways - Encourage persons to ride bikes for health reasons as well as for environmental reasons.

Landscaped Medians and Street Trees - Overly wide streets in Exeter should be considered for a tree-lined medians.
The General Plan projected that by 2020, Exeter will have a population ranging from 13,306 to 16,177. To accommodate this population, the General Plan projected that the community would need between 239 and 404 acres for single family residential development (based on 4.5 units per acre), 17 to 29 acres for multi-family development (based on 15 units per acre) and 12 to 21 acres for mobile home parks (based on 8 units per acre). The General Plan also projected that the city would require two elementary school sites (10 acres each), 30 to 44 acres of parkland and 20 to 34 acres for retail/office development.

Since the completion of these land demand projections in 2001, Exeter has developed approximately 50 acres of single family development; three acres of multi-family development; nine acres of parkland and two acres of retail/office development. As Exeter enters 2005, the community still requires over the next 15 years the following land use acreages for urban development: single family, 189 to 354 acres; multi-family, 14 to 23 acres; mobile home parks, 12 to 21 acres; parkland, 21 to 35 acres; two elementary school sites of 10 acres each; and 18 to 32 acres of retail/office.

The Southwest Exeter Specific Plan planning area, which contains 320 acres, will play a pivotal role in Exeter’s future growth. Excluding service commercial and industrial uses, the land within the planning area could potentially accommodate 32 acres of office/retail uses; 17 acres of parkland, a 23-acre elementary school site, 20 acres of multi-family development, and 222 acres of single family development.
THE PLANNING AREA AND EXETER

The planning area is linked to the urbanized portion of Exeter by four primary east/west roadways and one north/south roadway (see Exhibit 5). Visalia Road and Maple Street connect the planning area to Exeter’s downtown and the larger original townsite, located one-half mile to the east. Firebaugh and Glaze Avenues link the planning area to Exeter’s only major north/south roadway, Kaweah Avenue (State Route 65). Many of Exeter’s notable public buildings and grounds front onto State Route 65, including Exeter Union High School, Exeter Memorial Building, Exeter Cemetery, the Exeter water tower and Lincoln Elementary School. Belmont Road connects the planning area to the northwest quadrant of Exeter, containing the Savemart Shopping Center and many of Exeter’s new residential neighborhoods.

THE PLANNING PERIOD

The Southwest Exeter Specific Plan will cover a time period of 20 years, 2005 to 2025.

USING THE SPECIFIC PLAN

The Specific Plan will be used as a “blueprint” by the City of Exeter to guide the development, management and conservation of land within the planning area. The Specific Plan will implement many of the General Plan’s goals, as previously mentioned, as well as its own goals, objectives, policies and actions. Further, the Specific Plan will establish design guidelines and development
standards for new development.

To determine if a development proposal is consistent with the Specific Plan, planning staff will complete a Specific Plan Evaluation Form (see Appendix A) on each development. This form will identify any aspects of the project that are inconsistent with the Specific Plan.

Specific plan format

The Specific Plan is divided into ten chapters.

CHAPTER ONE - INTRODUCTION
CHAPTER TWO - EXETER
CHAPTER THREE - EXISTING CONDITIONS
CHAPTER FOUR - PROBLEMS & OPPORTUNITIES
CHAPTER FIVE - GOALS, OBJECTIVES, POLICIES & ACTIONS
CHAPTER SIX - CIRCULATION AND TRANSPORTATION ELEMENT
CHAPTER SEVEN - LAND USE ELEMENT
CHAPTER EIGHT - INFRASTRUCTURE ELEMENT
CHAPTER NINE - IMPLEMENTATION
CHAPTER TEN - DESIGN GUIDELINES AND DEVELOPMENT STANDARDS

1- 14
WHAT IS A SPECIFIC PLAN?

A Specific Plan is a plan that is more detailed than a general plan. It typically applies to a portion of an area covered by the general plan. A specific plan details the distribution, location of the uses of land, including open space, within the area covered by the plan. The plan also highlights the following specific details pertaining to development within the planning area. The plan usually include:

1) the proposed distribution, location and alignment of major public improvements, including streets; sewer, water and storm drainage lines; bike paths, sidewalks and open space corridors.

2) standards and criteria by which development will proceed, and standards for conservation, development and utilization of natural resources.

3) a program for implementation measures including regulations, programs, public works projects, and financing measures necessary to carry out the above plan components.

A specific plan shall be adopted in the same manner as a general plan and may be amended as often as deemed necessary. Prior to adoption, public hearings will be held before the planning commission and city council.

The city council, after adopting a specific plan, may impose a specific plan fee upon parties seeking development approval in the planning area. This fee shall defray the cost of preparation, adoption and administration of the specific plan.
LOCATION

Exeter is located in Tulare County at the southern end of the San Joaquin Valley. It is bisected by State Route 65 (Kaweah Avenue), which runs north and south, and it is situated one and one-half miles south of State Route 198, a major east/west route in Tulare County that connects Highway 99 to Sequoia National Park. Exeter is located seven miles east of Visalia, the county seat of Tulare County.

HISTORY

The original Exeter township was formed by the Southern Pacific (SP) Railroad through its subsidiary, Pacific Improvement Company. The townsite was established after the Pacific Improvement Company bought land from John Firebaugh in 1888, a local landowner. Exeter received its name from an early promoter of the improvement company, D.W. Parkhurst. He named the city Exeter after his home city of Exeter, England.

The original townsite encompassed 240 acres. The SP Railroad traversed the townsite in a northwest to southeast direction. The railroad depot was situated between Pine and Maple Streets on the east side of the railroad tracks. As was the case in many early railroad-sponsored towns, Exeter’s first streets were laid out parallel with and perpendicular to the railroad tracks in a grid pattern. The streets had right-of-way widths of 80 feet and each block formed by these streets had a 20-foot wide alley that bisected the block. The early blocks were rectangular in shape, 320 by 400 feet. The lots measured 25 feet by 150 feet.
In 1911, when Exeter incorporated, the city had already shifted the orientation of its newer streets to north/south and east/west alignments. This reorientation created numerous triangular-shaped blocks where the two street patterns joined. Today, many of these blocks are used either as park or church sites.

Exeter’s land use patterns and appearance were forged by three seemingly unrelated forces – railroads, agriculture and building materials. Exeter’s past, present and future land use patterns have been dictated by railroads. Exeter’s first railroad, Southern Pacific, traversed the city in a northwest/southeast alignment. This man-made feature essentially divided the city in half. In 1905, the Visalia Electric Railroad began operation. This railroad connected Exeter to Visalia to the west and Lemon Cove to the northeast. This railroad, which runs from the SP Railroad to the east towards the foothills, has limited development in the northeast quadrant of town. The Sante Fe Railroad was constructed in 1914. The Sante Fe line formed the eastern border of Exeter. Except for the development of agriculturally-related industries (packing houses, cold storage) along the track, development has not occurred east of this railroad.

Oranges drive the economy in Exeter. This crop replaced Exeter’s early crops, which included Emperor grapes, dry-land wheat and barley. First planted in 1896 by George Frost, the citrus industry today (oranges, lemons, grapefruit, tangerines) dominates Exeter’s visual and economic landscape. Citrus is the dominate crop around Exeter and in fact lines both sides of State Route 65 from State Highway 198 to the city limits. In terms of the economy, as goes the citrus industry so goes the Exeter economy. Sectors of the economy that are strongly dependent on the citrus industry include, trucking, packing, cold storage, spraying, irrigating, processing, and marketing.

Bricks and granite were building materials that were mined in the Exeter area.
TWO - EXETER

The Exeter brick yard produced brick that was used widely on buildings throughout Exeter and the Rocky Point Granite Quarry provided material for most of the curbs in downtown Exeter and many of its buildings. Today, the brick yard, which is located north of Exeter, is used as a storm drainage retention basin.

DEMographics

Exeter’s 2004 population was 9,904, up from the 2000 census figure of 9,169. Between 1980 and 1990, Exeter’s annual growth rate was 2.6 percent. From 1990 to 2000 the annual growth rate dropped to 2.3 percent.

Figure No. 1: Exeter Population

The median age of Exeter residents is 30.1 years. Approximately 34 percent of the population is under 18 and 11 percent is over 65, highest among the eight cities in Tulare County.
The median household income is $33,738, second highest among the eight cities in Tulare County. Visalia is ranked first. Exeter is also second to Visalia for the lowest percentage of people in poverty, 19.1 percent.

The ethnic composition of Exeter residents is 57.4 percent White, 38.3 percent Hispanic, 1.3 percent Asian, .9 percent Native American and 2 percent Other.

The top three industrial sectors employing persons in Exeter include manufacturing, 13.4 percent; health care, 11.9 percent and education, 10 percent. Only about 21 percent of Exeter’s labor force works in town. The balance work in other communities (71.7 percent) or other counties (7.1 percent). The median travel time to work is 23 minutes, about the time it takes to drive to Visalia. Almost seven percent of the labor force has a commute time that exceeds one hour.

HOUSING

The number of housing units in Exeter in 2000 was 3,168, 3,001 were occupied and 167 were vacant. Almost 63 percent of the housing units were owner-occupied while 37 percent were renter-occupied. By housing type, Exeter had 2,448 single family dwellings, 365 apartments and 174 mobile homes. The median household size was 3.02 persons per unit, the second lowest among the county’s eight cities.
The median rent in Exeter was $522 per month and the median home value was $94,800. Of the cities in the county, Exeter had the third highest median rent and median home value.

There are numerous types of households in Exeter. For example, 651 households (21.7 percent) are occupied by persons over 65; 563 households (18.8 percent) live alone; 446 (14.9 percent) are single parent households; and 1,668 (55.6 percent) households are occupied by a married couple with children.

LAND USE

Exeter is a compact community occupying approximately two square miles of
TWO - EXETER

land and containing a population of 9,168 (Jan. 1, 2000). The urban growth has extended in all directions from the original 1888 townsite. Exeter’s downtown and its older residential neighborhoods are contained within a triangular area that is formed by the SP Railroad on the west, the Visalia Electric Railroad on the north and State Route 65 (Kaweah Avenue) on the east. The city’s industrial districts, which are dominated by agriculturally-related uses such as packing houses and cold-storage facilities, are located along the Southern Pacific Railroad, the A.T. & S.F. Railroad, and Industrial Drive, located immediately south of the original townsite.

Single family residential development has occurred in all quadrants of the city, with most of this type of development occurring on the west side of town since 1980. Development of multiple family residential development has been limited. Scattered corner lots in the original townsite have been developed with duplexes and triplexes and a cul-de-sac street in the southeast quadrant of town was developed with 11 duplex units. The most recent multiple family developments included a 45-unit complex at the northeast corner of Visalia Road and Jacobs Place and an 18-unit complex at the northeast corner of F Street and Palm Avenue. These units provided housing opportunities for low- to moderate-income families in the community.

Commercial development is centered in the downtown and to a lesser extent, along Visalia Road and Kaweah Avenue (State Route 65). Recent developments include fast-food franchises on Visalia Road, an office complex on north Kaweah Avenue, a Best Western Hotel on south Kaweah Avenue, and numerous remodels of retail space in the downtown.

Schools and parks are scattered throughout the community. An elementary school was recently constructed on Sequoia Drive in the northeast quadrant of the city and the school district recently purchased a 22-acre future elementary school site in the Specific Plan planning area.
THREE - EXISTING CONDITIONS

LAND USE

The planning area is dominated by agricultural uses - citrus, plums, persimmons and vines (see Exhibit 6).

The planning area is dominated by agricultural uses, including vines and tree crops.

Ten rural homesites and their accessory farm buildings and structures are located in the planning area, mostly along the south side of Visalia Road and the west side of Belmont Road. The only urban development of any significance in the planning area is a Burger King that was built on the south side of Visalia Road in the mid-1990s. An old trailer park once existed just east of this restaurant on the southwest corner of Belmont and Visalia Road but has been cleared to make room for a proposed small shopping center, called Citrus Plaza.
THREE - EXISTING CONDITIONS

CIRCULATION

The planning area is currently served by three roadways. Visalia Road forms the planning area’s northern boundary line. It has a right-of-way width of 84 feet and will eventually be improved to a four-lane roadway with a landscaped median and left-turn pockets. Belmont Road has a right-of-way width of approximately 60 feet from Visalia Road to Chestnut Avenue. South of Chestnut, the west side of Belmont is not improved and the existing right-of-way is less than 60 feet, ranging from 50 to 58 feet. Belmont currently operates as a two-lane roadway with parking on both sides of the street where full development has occurred. Chestnut Avenue bisects the planning area extending west from Belmont Road to Road 184. It is a two-lane paved county road with a right-of-way of 50 feet.

Looking east across Visalia Road. This arterial roadway will accommodate the planning area’s commerical development.
Tulare County has a Mediterranean climate - hot, dry summers and cool, moist winters. Temperatures recorded in Exeter indicate that the average temperature in July is 81 degrees Fahrenheit and in January, 45 degrees Fahrenheit. It is not uncommon for maximum temperatures in the summer months to exceed 100 degrees F and drop below 32 degrees F in the winter months. The prevailing winds are from the northwest, usually less than 10 miles per hour.

A unique phenomenon to the San Joaquin Valley is "tule fog". This low lying ground fog is prevalent throughout the Valley during the months of November through February.

Approximately 90 percent of the county's rainfall occurs between the months of November and April. The average annual rainfall for the Exeter area is approximately 10 to 11 inches.

TOPOGRAPHY

The planning area is situated on relatively level terrain that slopes slightly from northeast to southwest. Elevations in the planning area range from 365 to 380 feet above mean sea level (see Exhibit 7).

SOILS

The soils underlying the planning area is classified as Flamen loam, 0-2
percent slope. Flamen loam has a Class II agricultural capability. In the San Joaquin Valley, the agricultural capability of a soil is important because it describes the value of a soil in terms of crop production. Class I soils have slight limitations for the growing of crops while a Class VIII soil has limitations that preclude the growing of crops. Generally a Class I soil can support a wider variety of crop types as compared to a Class III soil. This soil supports prime farmland.

This soil is alluvium derived mainly from granitic rock. Loam occupied the upper profile, from 0 to 43 inches. From 43 to 72 inches there exists a cemented hardpan. The soil is moderately well-drained and has a moderate shrink-swell potential. It is highly corrosive to steel.

FLOODING

According to FEMA’s (Federal Emergency Management Agency) Flood Insurance Rate Maps for the Exeter area, the planning area is not within a 100-year floodplain, however, it is within a 500-year floodplain. This floodplain does not preclude development nor does it place any building restrictions on development.

BIOTIC RESOURCES

An inquiry of the California Natural Diversity Database (CNDDB) in 2001, indicated that special-status plants and animals did not exist within the Exeter planning area according to an inspection of the Exeter U.S.G.S. 7.5 minute quad sheets. There are special-status plants and animals located at sites in the adjoining foothills, however, none or these species frequent or have established themselves on the Valley floor inside the planning area.
HYDROLOGY

There is one surface water system in the planning area, Locust-Grove Ditch. Locust-Grove Ditch will be piped throughout the planning area. A pedestrian trail and bike path will be constructed over the piped ditch. It will be lined with pedestrian lighting and will be planted with xerophytic plants.

The ditch begins on the Kaweah River and flows south along the west side of Belmont Road and then eastward along the westerly extension of the Glaze Avenue alignment. This ditch is used primarily for irrigation and secondarily, to accept storm water runoff from urban uses in Exeter.
THREE - EXISTING CONDITIONS

The aquifer underlying Exeter and the central San Joaquin Valley originates from rain and snowfall on the Sierra Nevada range to the east, and, to a lesser degree from rainfall on the Valley floor. Water table depths in the planning area range from 40 to 60 feet from the ground’s surface elevation.

AGRICULTURAL PRESERVES

The planning area contains four parcels that are in an agricultural preserve, under a Williamson Act contract, containing 98 acres (see Exhibit 8). This contract insures that property will remain in agricultural production for at least 10 years unless the formation of the agricultural preserve was protested by the City of Exeter when formation was considered. If the agricultural preserve was protested by the City, the land that is under contract can be removed from a preserve status, annexed to the City and eventually developed consistent with the Southwest Exeter Specific Plan.

INFRASTRUCTURE

For the Southwest Exeter Specific Plan planning area to be effectively developed, infrastructure must be designed, reviewed and installed. Exeter is responsible for three primary types of infrastructure that will serve the planning area—sewer, water and storm drain. These improvements will installed at the time of development and must be consistent with the city’s master plan for each type of infrastructure.
THREE - EXISTING CONDITIONS

SEWER

The City of Exeter owns, operates and maintains its own wastewater treatment plant and collection system (see Exhibit 9). Currently, the city’s system serves developed areas within the city limits, as well as some development on the fringe of the city. Upon annexation, the city’s sewer system will serve the Southwest Exeter planning area.

Three different sewer lines exist along Belmont Road. From Visalia Road to Chestnut Avenue there exists a 12-inch line and from Chestnut Avenue to the wastewater treatment plant there exists two sewer truck lines: an 18-inch line and a 36-inch line. They are currently operating at 50 percent capacity.

Along Visalia Road there exists an 8-inch line (20 feet deep) that extends from Jacobs Place to Belmont Road. Wastewater from this line must be “lifted” to enter the 12-inch in Belmont Road.

Except for Burger King, all the residential dwellings in the planning area currently utilize septic tank leach line systems.

WATER

The City of Exeter provides water service to all developed areas within the city limits (see Exhibit 10). The City also provides water to some parcels of land on the fringe of the city, outside the city limits. Upon annexation, the city’s system will serve the Southwest Exeter planning area.

The City utilizes groundwater for its source of domestic water. The City currently has four wells in production, down from a previous six. These wells draw from depths that range from 296 feet to 430 feet.
THREE - EXISTING CONDITIONS

Existing water lines for located along Visalia and Belmont roads. Three water lines exist along Belmont. From Visalia Road to Chestnut Avenue there exists a 10-inch line; from Chestnut Avenue to Firebaugh Avenue a 6-inch line and from Powell Avenue to Glaze Avenue a 10-inch line. Along Visalia Road there exists a 12-inch line from Elberta Avenue to Belmont Road.

STORM DRAINAGE

The City of Exeter is responsible for the planning, engineering, construction and management of the storm drainage system that accepts storm water runoff from lands within the city limits (see Exhibit 11). In addition, the city works closely with Consolidated People’s Ditch, a privately-owned mutual water company, in the management and disposal of this runoff when it enters Locust-Grove Ditch, operated by Consolidated People’s Ditch. This ditch flows along the east and south boundaries of the planning area. It courses from Visalia Road south along the west side of Belmont Road to Glaze Avenue where it turns west and flows towards the future alignment of Elberta Road at which point it again flows south.

The two primary storm drainage facilities in the City of Exeter are the Exeter Brickyard, a 13-acre pond located on the north side of Exeter, and the Locust-Grove Ditch, a privately operated ditch that flows from north to south, located just west of Belmont Road. Secondary facilities include small, scattered storm water ponds that were installed when adjacent land was subdivided.

The southwest quadrant of the city is served by a 30-inch storm drainage line that empties into the Grove-Locust Ditch near the intersection of Glaze Avenue and Belmont Road. The City has a five year agreement with Consolidated People’s Ditch to accept up to ten cubic feet per second of storm water generated from this quadrant of the city.
FOUR - PROBLEMS & OPPORTUNITIES

This chapter will feature the problems and opportunities the city of Exeter will face as it implements the Southwest Exeter Specific Plan. They are grouped under various topic headings, such as density, connectivity, infrastructure and architectural styles.

The topics have been reviewed and discussed by the specific plan advisory committee. The goals, objectives, policies and actions of the Specific Plan arose from the Committee’s study of the topics detailed below. Each topic can influence a number of planning issues. For example, “density” affects the preservation of agricultural land, residential subdivision design, housing affordability and air quality. At the end of each topic discussion, a list of problems and opportunities is provided.

DENSITY

Farmland protection, better air quality and efficient use of city services and infrastructure are inextricably connected to a city’s growth strategies. Since 1990, the City of Exeter has developed 269 acres of land for single family residential development. This acreage has yielded 907 single family residential lots with a gross density of 3.37 units per acre, or 10.28 persons per acre based on 3.05 persons per dwelling unit.

The Southwest Exeter Specific Plan encompasses about 320 acres of land. Approximately 70 acres will be used for non-residential purposes, including commercial uses, schools, churches and parks. The balance of the planning area will be developed for residential uses, ranging from very low density residential (two dwelling units per acre/six persons per acre) to high density residential (29 dwelling units per acre/84 persons per acre).

Facing Exeter, as well as every other city in the rapidly growing Central
FOUR - PROBLEMS & OPPORTUNITIES

Valley, is a fundamental planning question: What residential density should a city plan for? If a city opts for a low density residential development, the community takes on a sprawling urban pattern and along with it, its related environmental impacts (e.g. air quality, loss of agricultural land, dilution of public services). If a city opts for a high density residential development, the public may complain that the planning area is too “crowded” causing local roadways to become congested or schools to be overcrowded.

Single family development constructed a densities of three to four unit per acre consumes more agricultural land than residential densities of five or more units per acre.

Good design and proper planning can ameliorate many of the adverse impacts associated with high density residential development, however, it is the
FOUR - PROBLEMS & OPPORTUNITIES

community that must eventually make “the call” as to what is an acceptable residential density.

To give the reader a perspective of population densities of Central Valley cities and elsewhere, the following statistics are provided. The figures contained in Table No. 1 were derived by dividing a city’s 1990 population by the city’s area measured in acres. Unfortunately, the area measurement includes not only land used for residential purposes but also land used for commercial, industrial, public and open space uses.

Table No. 1
Densities of Selected Cities

<table>
<thead>
<tr>
<th>City</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong Kong</td>
<td>161 persons per acre</td>
</tr>
<tr>
<td>New York</td>
<td>35.7</td>
</tr>
<tr>
<td>San Francisco</td>
<td>23.4</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>11.2</td>
</tr>
<tr>
<td>Modesto</td>
<td>8.5</td>
</tr>
<tr>
<td>Sacramento</td>
<td>6.0</td>
</tr>
<tr>
<td>Exeter</td>
<td>5.7</td>
</tr>
<tr>
<td>Fresno</td>
<td>5.6</td>
</tr>
<tr>
<td>Bakersfield</td>
<td>3.0</td>
</tr>
<tr>
<td>Redding</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Source: County and City Extra: annual Metro, City and County Data Book, 1992.

A report prepared by Alvin D. Sokolow entitled Municipal Density and Farmland Protection: An Exploratory Study of Central Valley Patterns, (12) documented the population densities of cities in the Central Valley, measured in persons per acre and calculated by dividing a city’s population by its area measured in acres. The Valley cities had an average density of 4.5 persons per acre (Note:
Exeter was 5.7 persons per acre. Coastal cities had higher persons per acre densities than its Valley counterparts, averaging 5.7 persons per acre. Some of the more notable coastal cities that exceeded the average included Santa Barbara, 7.1; San Luis Obispo, 7.3; Carmel, 6.0; and Fillmore, 7.2. Of the major cities in the Valley that exceeded the Valley average, the top three were Modesto, 8.5; Stockton, 6.3 and Sacramento, 6.0.

Sokolow’s report also calculated population density by dividing a city’s total population by the acres of land devoted to residential development. This measurement of density is a more accurate indicator of residential development policies because it does not include lands devoted to non-residential uses. Some cities, for example, have large expanses of land devoted to industrial parks while other cities may have limited amounts of industrial development but devote a significant amount of land for commercial development. Using this method, Sokolow calculated the average persons per residential acre for 16 cities in the Valley. The average density was 15.7 persons per residential acre. The top three cities were Madera, Delano and Selma at 24.8, 20.1 and 19.5, respectively. The three cities with the lowest densities were Tulare at 11.8, Modesto at 12.0 and Clovis at 12.2. Exeter is estimated to have a population density of between 10 and 12 persons per acre based on the last 10 years of residential growth.

The average persons per residential acre of 16 selected cities in the Central Valley was 15.7.

Alvin Sokolow

The single family home is the most popular form of housing in the United States . . . it epitomizes the American Dream. People yearn for a detached single family home that is affordable, has a front and back yard; is located in a
FIVE – PROBLEMS & OPPORTUNITIES

neighborhood that is safe, clean, quiet and visually pleasing; and is in close proximity to shopping and employment. Unfortunately, as we enter 2005, home prices in Exeter, the Central Valley and California have reached all-time highs. The median home price in California in October, 2004, was $474,000, and the Central Valley was $288,000. Exeter is estimated to be $212,459. Currently, only about 20 to 25 percent of the households in Exeter can afford to purchase a median-priced home, leaving 75 to 80 percent of Exeter’s households seeking either less expensive housing or renting. Unfortunately, few apartments or entry-level homes have been constructed in Exeter over the last ten years. To provide affordable housing for these households, new housing will be required to exceed residential densities typical of Exeter and other Valley communities. In other words, higher residential densities translates into affordable housing.

To provide affordable housing, Exeter will be required to plan for higher residential densities in the planning area.

Higher residential densities do not necessary equate to poor design or planning. In fact, often times higher density residential projects are better designed because the developer is sensitive to the fact that a poorly designed development could be rejected by the planning commission or the city council or worse yet, by the public, by not purchasing or renting a unit. In other words, higher residential densities can often lead to better designed developments. For example, developers of multi-family residential projects that are supported by tax credits will often hire architects and landscape architects to design their projects. This is generally not the case of developers of multi-family projects who are not applying for tax credits.
FOUR - PROBLEMS & OPPORTUNITIES

Problems and Opportunities

P: Low density residential development patterns promotes urban sprawl and consumes more agricultural land than higher density residential development.
O: Increase residential densities to reduce urban sprawl and conserve agricultural land.

P: Low density residential development generally creates more expensive housing than higher density residential development.
O: Increase residential densities to promote housing affordability.

P: High density residential projects may present a poorly designed product.
O: Require high density residential projects to undergo architectural review.

P: Providing public services to low density residential development is generally more expensive than providing these same services to higher density residential development.
O: Increase residential densities to promote a more cost effective public service delivery system.

CONNECTIVITY

In planning circles there are two types on connectivity - human and physical. Any type of urban design that promotes human interaction (connectivity) is generally judged as positive. Gatherings in a neighborhood park, playing on a soccer team or talking to a person from your porch as they walk by on a sidewalk, promotes a “sense of community”. The key to “community” is relationships. Relationships can only occur if people connect. When people
connect, the potential for relationships and a genuine community is improved. When we design neighborhoods, homes and parks so that these opportunities are absent or infrequent, the quest for that “sense of community” is lost.

The key to “community” is relationships. Relationships can only occur if people connect.

To connect or not to connect. That is a question that transportation planners across the nation struggle with. Not connecting streets to streets in adjacent neighborhoods means less traffic on the street that is disconnected. However, the lack of traffic on one street means more traffic on another street. There are winners and losers in the neighborhood traffic game. Both camps have strong reasons for their opposing positions. These positions are outlined in the book, Planning for Street Connectivity by Sandy Handy, Robert G. Patterson and Kent Butler (13).

Those who favor higher connectivity argue that it will:

- decrease traffic on collector and arterial streets;
- provide for continuous and more direct routes that facilitate travel by non-motorized modes such as walking and bicycling and that facilitate more efficient transportation service;
- provide greater emergency vehicle access and reduced response time, and conversely, provide multiple routes of evacuation in case of disasters such as wildfires; and
- improve the quality of utility connections, facilitate maintenance, and enable more efficient trash and recycling collection and other transport-based community services.

Those who favor less connectivity argue that it will:
FOUR - PROBLEMS & OPPORTUNITIES

- raise levels of through traffic on existing residential streets;
- require more land to develop the same number of units;
- increase infrastructure costs and impervious surfaces;
- decrease the affordability of housing; and
- threaten the profitability of developments.

Early city design had streets arranged in grid patterns, typically running east/west and north/south. Blocks were relatively short and street frontage for buildings was maximized. In the 1930’s, the Federal Housing Administration (FHA) published Planning Neighborhoods for Small Houses wherein the cul-de-sac street was encouraged and the grid pattern was discouraged. What planners and traffic engineers have discovered with the shift away from the grid pattern is that it is difficult to get from one location to another thereby using more gas, generating more air pollution and wasting more time. Cary, North Carolina, responded to this dilemma when they approved a Connectivity Ordinance (1999) that stated:

“The purpose of the Ordinance is to support the creation of a highly connected transportation system within the Town in order to provide choices for drivers, bicyclists, and pedestrians; promote walking and cycling; connect neighborhoods to each other and to local destinations such as schools, parks, and shopping centers; reduce vehicle miles of travel and travel times; improve air quality; reduce emergency response times; increase effectiveness of municipal service deliverer; and free up arterial capacity to better serve regional long distance travel needs.”

Problems and Opportunities

P: A neighborhood that lacks “connectivity” generally requires persons to travel greater distances to reach their destination.
O: Design neighborhoods that are well connected to other destination points by
designing for through streets, “kissing” cul-de-sacs, and continuous pedestrian and bike pathways, and avoiding the use of walls that separate one neighborhood from another.

P: Neighborhoods that are designed with walls and entry gates are less likely to “connect” with adjacent neighborhoods.
O: Design neighborhoods that avoid the use of walls, entry gates, and roadways that dead-end into adjacent neighborhoods.

P: A neighborhood that is not effectively connected to adjacent neighborhoods generates more vehicular air pollution.
O: Design residential subdivisions so that effective connectivity is achieved.

P: Neighborhoods that are not effectively connected to adjacent neighborhoods cause longer response times for emergency vehicles.
O: Design residential subdivisions so that effective connectivity is achieved - two or more entrances into a neighborhood.

P: Neighborhoods that are not effectively connected to adjacent neighborhoods can create “un-looped” water lines and inefficient solid waste collection.
O: Design residential subdivisions so that effective connectivity is achieved - fewer cul-de-sacs and more through roadways.

P: Neighborhoods that contain homes that lack porches, pedestrian-friendly sidewalks, and through streets are less likely to promote human interaction.
O: Design neighborhoods that promote human interaction by incorporating porches, pedestrian-friendly sidewalks and streets that are linked to other neighborhoods.
Neighborhoods that contain homes with front porches and pedestrian-friendly sidewalks (shaded and well lit) promote human interaction.

OPEN SPACE

Open space refers to any parcel or area of land or water which is essentially unimproved and devoted to an open space use or function. Open space is a irreplaceable resource because once it has been committed to urban development, it can not be recovered. Open space may be used for:

- the preservation of natural resources;
- the managed production of agriculture and other resources;
- outdoor public recreation, including parks and areas of historic or
FOUR - PROBLEMS & OPPORTUNITIES

cultural interest;
• the enjoyment of scenic beauty; or
• trails, pedestrian corridors, and landscaped medians and parkways.

The Quimby Act, a section of the state Subdivision Map Act, permits a city to require park land dedication or a fee in lieu of dedication, or a combination of both, to secure between three and five acres of park land per 1000 people. Applying this formula to the residential portion of the planning area, containing an estimated 250 acres, and using a population density of 10.28 persons per acre, residential build out will yield 2,570 persons. The Quimby Act would permit Exeter to secure between 7.7 and 12.85 acres of land for parks. If a higher persons per acre density is utilized, 15.7 persons per acre for example, the planning area would yield a population of 3,925. The Quimby Act would permit Exeter to secure between 11.77 and 19.62 acres for park land.

Open space in the planning area will fall into one of three categories - 1) agricultural fields; 2) parkways with trails; and 3) parks.

AGRICULTURAL FIELDS

Because agriculture is a major landscape feature in the planning area, many views within the planning area will be dominated by agricultural fields, especially on the southern and western borders of the planning area where agriculture will form a permanent border. Since the planning area will be developed over the next 20 years, there are many parcels within the planning area that will remain under agricultural production until they are developed. They will be a major part of the planning area’s view shed.
Agriculture will dominate the view of developments in the planning area.

PARKWAYS AND TRAILS

The planning area will be laced with landscaped medians, tree-lined parkways and a pedestrian pathway that will follow the Locust Grove Ditch alignment. The pedestrian pathway will permit people to walk or ride from one part of the planning area to another without having to share “the road” with motor vehicles. This feature will make for a safer and more enjoyable trip for the pedestrian or bicyclist.
Parks

The planning area could potentially contain between 7.7 and 19.62 acres of open space, depending on the ratio of park land per 1000 people used in the specific plan. Questions abound on the issue of parks in a community. How big should they be? What should they contain? What should they look like? Who should maintain them? Who should they be designed for? etc.

Much has been written about parks over the last 100 years. Experts have
opined on what makes for an attractive park, a successful park, and conversely, an unsuccessful park. The two most insightful persons on the issue of parks this country has produced are Jane Jacobs, *The Death and Life of Great American Cities*, and Frederick Law Omstead, the architect of Central Park in New York City, the Great White City of the 1893 World’s Columbian Exposition, the grounds of the US Capitol and Stanford University, and numerous parks in the cities of Chicago, Buffalo, Louisville, Rochester, Boston and Detroit to name a few.

Jane Jacobs had great insight as to what made for a successful neighborhood park. Some of her general observations are as follows (Note: Jacob’s reflections pertain primarily to parks in New York City in the 50s and 60s (14):

- “Neighborhood parks are intended for “general bread-and-butter use”. In other words, the park will be used as a local public yard.”
- “Neighborhood parks are not real estate stabilizers or community anchors. They are not automatically anything.”
- “Far from transforming any essential quality in their surroundings, far from automatically uplifting their neighborhoods, neighborhood parks themselves are directly and drastically affected by the way the neighborhood acts upon them.”
- “Does anything about the physical arrangement of the neighborhood park affect the park physically?” Yes. This mixture of uses of buildings directly produces for the park a mixture of users who enter and leave the park at different times.
- Outstanding neighborhood parks seldom have much competition from other open spaces. . . Greatly loved neighborhood parks benefit from a certain rarity value.
- Parks intensely used in generalized public-yard fashion tend to have four elements in their design which I call intricacy, centering, sun and enclosure. The object of a bread-and-butter neighborhood park is to attract as many
different kinds of people, with as many schedules, interests, and purposes as possible, . . .

The object of a bread-and-butter neighborhood park is to attract as many different kinds of people, with as many schedules, interests, and purposes as possible.

Jane Jacobs

• Intricacy that counts is mainly intricacy at eye level, change in the rise of ground, grouping of trees, openings leading to various focal points – in short, subtle expressions of difference.
• Good small parks typically have a place somewhere within them commonly understood to be the center – at the very least a main crossroads and pausing point, a climax.
• Sun is part of a park’s setting for people, shaded, to be sure, in summer.
• The presence of buildings around a park is important in design. They enclose it. They make a definite shape out of the design.

Frederick Law Olmsted, the architect on America’s most famous park – Central Park in New York City, believed that “the experience of scenery was visual” and that this experience led to the well-being on the whole of the person.” He also felt that this scenery was able to “refresh and delight the eye and through the eye, the mind and the spirit.”

Olmsted believed that “landscape moves us in a manner more analogous to the action music than anything else.” His opinions were developed in the mid 1800s when America’s cities were overcrowded, unsanitary, unsightly, and persons
were working 12 hours a day and had little time for recreation.

Landscape moves us in a manner more analogous to the action of music than anything else.

Frederick Law Olmsted

Omsted’s design and construction of public parks was to provide open space where the public could escape the sights and sound of the urban landscape. The public park could also become a meeting ground for citizens of different backgrounds.

Problems and Opportunities

P: A lack of parks and open space features in a large planning area reduces
opportunities for residents to participate in recreational opportunities, including walking, riding bikes, barbecues, playing organized sports, or simply playing catch.

O: Design neighborhoods so that open space features are available and in close proximity to planning area residents.

P: A lack of parks and open space features in a large planning area reduces opportunities for persons to enjoy the views offered by open space features.

O: Design residential neighborhoods to take advantage of views provided by open space amenities.

P: Neighborhoods that lack open space features often lack character and are less interesting and marketable than neighborhoods that contain a park or open space feature, like a bike path or tree-lined median.

O: Design neighborhoods so that they contain accessible parks and other open space features that are unique in design and useable by a wide range of user types and ages.

P: Too little open space in a planning area can cause these features to become overcrowded.

O: The specific plan should set a standard for open space of five acres per 1000 people and that said open space would include land and or improvements allocated to a linear parkway that may follow the Locust-Grove Ditch.
CIRCULATION

From the narrowest alley to the nearest state highway and from the residential sidewalk to the neighborhood bike path, these travel ways help us get from point A to point B. From cars and buses to bicycles and feet, a city’s circulation system accommodates many forms of transportation.

Streets

Ideally, streets should be designed so that traffic moves effectively and is dispersed evenly, not overwhelming a particular street. They should be designed to be safe by “calming” traffic speed using various design features, including narrower streets, bulbouts, medians, roundabouts, and speed tables.

Streets should accommodate bikes and pedestrians and present a functional and efficient circulation network for public safety and solid waste vehicles as well as public transportation buses.

Each type of street has a different function and cross-section design. Some streets are inspiring while other are nondescript. The South West Exeter Specific Plan will encourage streets to be designed so that are functional, safe and visually pleasing.
FOUR - PROBLEMS & OPPORTUNITIES

A roundabout in Davis, California.

A tree-lined roadway in Redlands, California.
Sidewalks

Pedestrian linkages (sidewalks) between housing and schools, parks, shopping, and other houses provide opportunities for people to meet, interact and improve their health. As an added benefit, walking instead of driving also improves air quality.

The width of a sidewalk should be in direct proportion to the number of users. A three foot wide sidewalk is adequate for a lone pedestrian, however, if two persons wish to comfortable walk side by side a five foot sidewalk should be required according to Anton Nelessen’s book *Vision for a New American Dream* (15).

A pedestrian-friendly sidewalk in Claremont, California.
To promote walking, the sidewalk network must be continuous, safe and pleasant.

Anton Clarence Nelessen

Bikepaths

The Southwest Exeter Specific Plan envisions a bikepath that will follow the alignment of the Locust-Grove Ditch as it courses through the planning area. This ditch runs along the east and south boundary lines of the planning area.

Bikepaths complement the planning area’s sidewalk network. They provide an opportunity for persons to bike to various destinations within the planning area as well as providing an alternative pathway for joggers and skaters. A two-way bikepath should be well lit, it should be at least eight feet in width with a cement or asphalt surface and it should have a crossing demarkation feature when it crosses a street.

A 10-foot asphalt bikepath in Visalia, California.
Public Transportation

For persons to utilize Exeter’s public transportation system, which includes a dial-a-ride feature and a bus connection to Visalia, the transit collection sites must be easily accessible to persons in the planning area, they must be covered and well lit and they should be linked to the planning area’s other circulation routes - streets, sidewalks and bikepaths.

Problems and Opportunities

P: Streets that are wide can often encourage traffic to move at a high rate of speed, sometimes above the legal speed limit.
O: Design neighborhoods so that streets are narrower which reduces traffic speed and creates a safer street.

P: A lack of sidewalks or sidewalks that are poorly design - no pedestrian lighting, too narrow, or restricted to one side of the street, discourages walking and its associated attributes - better health, connectivity with neighbors and reduced air pollution.
O: Design all neighborhoods, including non-residential neighborhoods, to include: sidewalks on both sides of a street, well lit sidewalks with human-scale light poles (9 to 12 feet) and sidewalks that promote walking, five feet or wider in width that are lined with street trees.

P: Neighborhoods that lack bikepaths generally have low bike ridership and require school-aged children to ride on the street as they travel to school or other destinations.
O: Design bikepaths so that people are encouraged to ride their bikes as an alternative means of travel or for health and recreation reasons. A bikepath that would follow the Locust-Grove Ditch alignment will provide a route separate from the planning areas roadways thereby promoting safer travel and

4-22
increased ridership.

P: Few people in Exeter use its public transportation system. Seniors are the highest users of the system, utilizing the dial-a-ride system to travel to shopping and doctor destinations.

O: Transit stops should be located throughout the planning area, especially adjacent to major destination points, such as shopping centers and school, and they should be designed so that they are comfortable (covered), safe (well lit) and attractive.

A bus shelter in Claremont, California.
For the Southwest Exeter Specific Plan planning area to be effectively developed an infrastructure system must be designed, reviewed and installed. The installation of infrastructure improvements is the responsibility of the developer and to a lesser extent, the city of Exeter. The city’s funds are generated by developer impact fees, which are paid to the city when property is developed. Maintenance of the systems is the responsibility of the City. Funds for this maintenance are generated through the collection of monthly service charges paid by residents and businesses.

Exeter is responsible for three primary types of infrastructure - sewer, water and storm drain. All of these improvements are installed at the time of development and must be consistent with the city’s master plan for each type of infrastructure.

Sewer

The City of Exeter owns, operates and maintains its own wastewater treatment plant and collection system. Currently, the city’s system serves developed areas within the city limits, as well as some development on the fringe of the city. Upon annexation, the city’s sewer system will serve the planning area.

The current design and layout of Exeter’s sewage collection system was planned through the the City’s Sewer Master Plan, prepared in 1974 and updated in 1999 by John Corollo Engineers, *Facilities Plan for Wastewater Treatment Plant Expansion* (16). The updated Master Plan was designed to expand the plant’s treatment capacity from 1.07 million gallons per day to 2.14...
The City's sewage collection system includes a network of "collection" lines that range in size from 6 to 18 inches in diameter. Many of these lines are connected to larger diameter main lines, which in turn are connected to the city's 18-inch and 36-inch trunk lines in Belmont Road. These trunk lines convey sewage to the City's wastewater treatment plant, located one-half mile south of the future intersection of Glaze Avenue and Elberta Road.

According to the city's consulting engineer, QUAD/Knopf, a portion of the planning area could direct wastewater to the lines in Belmont while the balance of the planning area could utilize a "new" line in the Elberta alignment, which would extend from Visalia Road south to the wastewater treatment plant. From Visalia Road to Glaze Avenue the line would be 12 inches, and from Glaze to the plant it would have a size of 15 inches. All other new lines in the planning area would be 6 to 8 inches in size.

Water

The City of Exeter provides water service to all developed areas within the city limits. The City also provides water to some parcels of land on the fringe of the city, outside the city limits. Upon annexation, the city's water system will serve the planning area.

The City utilizes groundwater for its source of domestic water. The City currently has four wells in production, down from a previous six. These wells draw from depths that range from 296 feet to 430 feet.

The water storage system consists of one above ground storage tank, located on the southwest corner of Kaweah Avenue and Pine Street. It is an elevated
FOUR - PROBLEMS & OPPORTUNITIES

100,000-gallon storage tank that provides water pressure for the city’s entire water system.

Exeter’s water distribution system consists of a network of pipelines installed under the streets and alleys of the community. The newer water lines in Exeter range from 6 to 10 inches.

In 2003, the City reported that the water demand for domestic water ranged from 755,000 gallons per day in the winter months to 2.14 million gallons per day in the summer months. During the winter months, Exeter’s residential units averaged between 220 and 290 gallons per day; during the summer months, this average soared to 680 to 740 gallons per day. Most of this increased demand can be attributed to outdoor irrigation.

According to the city’s consulting engineer, QUAD/Knopf, a portion of the planning area could utilize the water lines in Belmont and Visalia Road. For other portions of the planning area, a developer will be required to install new water lines. These new water lines should 1) provide for a “loop” system in order to maintain adequate water pressure and 2) the new water water lines should be constructed as a grid network – 12-inch lines every 1/2 mile, 10-inch lines every 1/4 mile; 8-inch lines every 1/8 mile and 6-inch lines on cul-de-sac streets.

To accommodate growth in the planning area, four new water wells will be required.

QUAD/Knopf Consulting Engineers

QUAD/Knopf has determined that there will be a need for four new water
FOUR - PROBLEMS & OPPORTUNITIES

wells in the planning area. These wells should be connected to a 12-inch water line so that adequate pressure and volumes are provided to adjacent development.

Storm Drainage

The City of Exeter is responsible for the planning, engineering, construction and management of the storm drainage system that accepts storm water runoff generated by lands within the city limits. Exeter also works closely with Consolidated People’s Ditch, a privately-owned mutual water company, in the management and disposal of this runoff. People’s Ditch manages Locust-Grove Ditch, which flows from Visalia Road to Glaze Avenue on the west side of Belmont Road. This waterway receives storm water runoff from Unger Park, a park/pond facility that is located on the northeast corner of Belmont Road and Glaze Avenue.

Currently, the City’s storm drainage system is operated, constructed and financed consistent with the City’s Storm Drainage Master Plan, adopted in 1977, and Ordinance No. 365, an ordinance that established procedures and fees for the development of storm drainage improvements.

The two primary storm drainage facilities in the City of Exeter are the Exeter Brickyard, a 13-acre pond located on the north side of Exeter, and the Locust-Grove Ditch, a privately operated ditch that flows from north to south, located just west of Belmont Road. Secondary facilities include small, storm water basins that are scattered throughout Exeter.

The management of storm water runoff has become more challenging over the years. Since storm water contains numerous contaminants like fossil fuels, NPK (nitrogen/phosphorus/potassium), bacteria, BOD, and heavy metals (lead, zinc, etc.), federal and state agencies, municipalities and local irrigation districts,
have expressed concern about the long-term environmental effects and legal liabilities associated with storm water runoff.

Development of land in Exeter requires a portion of the land to be dedicated for the retention or detention of storm water. “Retention” means the permanent storage of storm water with no eventual release to another body of water; “detention” means the temporary storage of storm water to control discharge rates, allow for infiltration and improve water quality. A general “rule of thumb” is that for every 20 lots created in a residential subdivision, one lot will be required for storm water retention/detention. Using this ratio of 20 to 1 for the residential portion of the planning area, containing 250 acres and using a unit density of 5.2 units per acre, retention/detention basins could account for 65 residential lots or approximately nine acres of land within the planning area. Using the conservative figure of $50,000 per lot, lots with a total value of $3,250,000 will be required for storm water detention/retention.

In an effort to reduce soil and water contamination and to reduce the acreage of land needed for storm water retention/detention basins, the Southwest Exeter Specific Plan will employ the use of low-impact development (LID) for the management of storm water, and it will utilize parks and the Locust-Grove Ditch right-of-way as areas where storm water can be retained or detained.

The goal of LID site planning is to allow for full development of property while maintaining essential site hydrologic functions. The key to making LID work is to “think small.” Micromanagement techniques utilize small catch basins, residential lots or common areas to distribute the control of storm water throughout the entire development site. This approach offers significant opportunities for maintaining the site’s key hydrologic functions including, infiltration, depression storage, interception as well as a reduction in the time of concentration.
LID utilizes micromanagement techniques involving small catch basins, residential lots or common areas to distribute the control of storm water throughout the entire development site.

One of the objectives of LID is to minimize and then mitigate the hydrologic impacts of land use activities closer to the source of generation. Traditionally, most storm water management models have focused on large end-of-the-pipe systems and therefore has overlooked the simple, small solutions. With LID, every urban feature - landscaping, streets, roofs, sidewalks, parkways and medians - can be designed to be multifunctional, incorporating detention, retention, filtration or use of runoff.

There are a multitude of strategies that can implement LID. Some design strategies are as follows:

- reduce road width which reduces impervious surface area
- reduce roof top coverage by construction of two-story units
- minimize driveway lengths
- avoid compacting soil thereby promoting infiltration
- direct roof top and driveway runoff to open swale system
- direct flow over pervious surfaces
- incorporate rain barrels into the development of a site.
- utilize parkways, medians and roundabouts for water detention.

The following table provides for the reader, the hydrologic functions of different land use patterns.
Table No. 2
Hydrologic Functions of Various Land Use Patterns

<table>
<thead>
<tr>
<th></th>
<th>Evaporation</th>
<th>Runoff</th>
<th>Infiltration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural system</td>
<td>40%</td>
<td>10%</td>
<td>50%</td>
</tr>
<tr>
<td>Impervious area, 10-20%</td>
<td>35%</td>
<td>20%</td>
<td>45%</td>
</tr>
<tr>
<td>Impervious area, 35-50%</td>
<td>35%</td>
<td>30%</td>
<td>35%</td>
</tr>
<tr>
<td>Impervious area, 75-100%</td>
<td>30%</td>
<td>55%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Source: Low-Impact Development Design Strategies, Department of Environmental Resources, Programs and Planning Division, Prince George County, Maryland, January, 2000.

Problems and Opportunities

P: Improper sewer line design can cause new sewer lines to be undersized and/or the installation of lift stations, which are costly to install and maintain.

O: An update to Exeter’s sewer master plan will be prepared that will delineate the location and size of new sewer lines in the planning area while also avoiding the need for lift stations.

P: A poorly designed water system can cause new water lines to be undersized and/or without adequate pressure, and it can create a system that lacks adequate sources of water that meet State safe drinking standards.

O: An update to Exeter’s water master plan will be prepared that will delineate the location and size of new water lines in the planning area while also avoiding dead-end lines that lack adequate water pressure. The master plan will also show the general location of new wells that will infuse water to the system. These wells will drilled only after test wells have been drilled to determine the ideal depth for ground water pumping.
A water master plan that does not have a water conservation element will overuse local water resources, causing water to become more expensive and a continued overdraft of the aquifer.

A water master plan will be designed to employ various strategies to conserve water, including xerophytic landscaping, reduced use of turf, and installation of rain barrels.

A traditional storm water master plan can be costly to implement and can require a significant dedication of land for storm water retention and detention. The Southwest Exeter Specific Plan will employ a Low Impact Development (LID) approach to managing storm water in the planning area. The LID approach will utilize the following micro-sites for storm water collection and infiltration: rain barrels, small on-site swales in front yard areas, parkways adjacent to sidewalks and driveways, street medians and the Locust-Grove Ditch right-of-way.

Traditionally, parks were used for recreation only and storm water was diverted to unsightly basins that remained dry for most of the year. The Southwest Exeter Specific Plan will require the dual use of parks by also utilizing them as storm water basins. These park/pond facilities will be three-tiered, containing a nuisance water basin that will be surrounded by a protective fence, an over-flow basin that will be shallow and free of water most of the year and will be used for playing fields; and a passive recreation area that will contain benches, picnic shelters and other features that can be used for outdoor recreation gatherings.
FOUR - PROBLEMS AND OPPORTUNITIES

ENERGY CONSERVATION

Buildings use more than one-third of the energy consumed in the United States. Heating and cooling systems account for 60 percent of this energy; lights and appliances use the other 40 percent (17). By carefully applying site, building and landscaping design principles, energy is conserved, the environment is improved and the economy is strengthened due to less reliance on foreign fossil fuels.

Proper solar orientation improves a dwelling's energy efficiency at little or no additional cost. Placing residential dwellings on east-west streets and installing a large percentage of the windows on south-facing walls can reduce heating fuel consumption by 25 percent (18).

The City of San Jose found that with proper solar orientation of new homes built, a total savings of 11 to 16.5 percent could be realized (19). Up to 40 percent energy savings could be realized for space cooling.

A report written for the California Energy Commission entitled, Passive Solar Marketing Strategy, found that new homes that incorporated a host of passive solar design features experienced significant heating and cooling savings. In this report, the study found that by utilizing “sun-smart” home design, homes
built in the Central Valley could experience a 33 percent savings in heating costs and 70 percent saving in cooling costs. Many of the features contained in the “Sun-Smart” home involved construction modification (R-7 slab insulation, ceiling fans, and night ventilation) while others involved passive solar design – facing windows to the south, shading on the south, and fewer windows on the west.

A “sun-smart” home can experience a 33 percent savings in heating costs and a 70 percent saving in cooling costs.

California Energy Commission

The Southwest Exeter Specific Plan will promote passive solar design for the planning area and individual buildings. The decision to incorporate energy saving devices into a building is reserved for the builder, developer or resident.

Proper solar orientation create buildings that are more comfortable - warmer in the winter and cooler in the summer, less expensive to operate, and more aesthetically pleasing - natural day lighting makes for a building that is more pleasing inside.

Solar design for the planning area and individual buildings has two simple objectives - optimize winter solar heating and minimize summer overheating.

Problems and Opportunities

P: Often times the design of residential subdivisions does not take advantage of passive solar design opportunities, like orienting streets in an east/west direction.

O: The Southwest Exeter Specific Plan will incorporate into its design guidelines
standards for passive solar design, including orienting streets in an east/west
direction, planting street trees and narrowing streets.

P: A residential dwelling that is improperly designed or oriented can consume
significantly more energy than a home that incorporates passive solar design
concepts.
O: Residential dwellings in the planning area should incorporate the following
design features when possible: 1. The long axis of the building should be facing
south; 2. Overhangs should be provided on south-facing walls; 3. The glazing
on west-facing walls should not exceed 10 percent of the area and glazing on
east-facing walls should be between 10 to 20 percent of the walls area; 4. A
minimum of 40 percent of a buildings glazing area should be facing 30 degrees
west and 45 degrees east of true south, which should represent about seven
percent of the house’s floor area; 5. Place garages and storage spaces on
the west- and north-facing walls to shade yard areas and to insulate the home
against solar heating; 6. Recess windows on south-facing walls; 7. Locate
outdoor cooling units on east-facing walls; and 8. Encourage “light” colored
roofing material to reflect heat rather than absorb heat.

P: The location and species of trees in residential subdivisions can sometimes
interfere with passive solar design features.
O: The Southwest Exeter Specific Plan will incorporate into its design guidelines
standards for passive solar design tree planting directions, including 1. Shade
west-facing walls with deciduous trees that effectively shade both the wall
and the roof; 2. Deciduous trees should be planted near south-facing walls so
that shade is cast during summer months and sunlight is allowed during winter
months.
The California Integrated Waste Management Act of 1989 (AB 939) mandated that by January 1, 1995, each California city and county must divert 25 percent of all solid waste generated within the jurisdiction from landfills through source reduction, recycling and composting activities. By January 1, 2000, the required waste diversion is 50 percent of the solid waste generated in each California city and county.

By January 1, 2000, AB 939 required cities to divert 50 percent of its solid waste from landfills.

California Integrated Waste Management Act of 1989

The city of Exeter contracts with Allied Waste for solid waste collection services. Allied provides three 90-gallon containers for each single family residential dwelling - one for green waste, one for recyclables and one for solid waste. Green waste is collected every Monday and the other two waste types are collected other days of the week.

In 2003, Exeter residents generated 9,204 tons of solid waste. Of this total, 6,465 tons went to the landfill and the balance was either recycled, 720 tons (7.8 percent), or composted, 2,019 tons (21.9 percent). Based on EMCON analysis of Exeter’s 1990 waste stream, the Consultant estimates that approximately 12 percent of Exeter’s 2003 waste stream was food waste, or 1,141 tons per year. Most of this material ended up in the landfill.
FOUR - PROBLEMS AND OPPORTUNITIES

AB 939 required that each city prepare, adopt and submit to the county a Source Reduction and Recycling Element. The primary objective of the Exeter's Source Reduction and Recycling Element is to meet the State-mandated waste diversion goals of 25 and 50 percent by 1995 and 2000, respectively. In 1990, the consulting firm EMCON Associates, analyzed Exeter’s residential waste stream and provided the following information.

<table>
<thead>
<tr>
<th>material</th>
<th>disposed</th>
<th>diverted</th>
<th>diversion rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>paper</td>
<td>1,206 tons</td>
<td>0 tons</td>
<td>0 percent</td>
</tr>
<tr>
<td>plastics</td>
<td>316 tons</td>
<td>4 tons</td>
<td>1.25 percent</td>
</tr>
<tr>
<td>glass</td>
<td>174 tons</td>
<td>35 tons</td>
<td>16.7 percent</td>
</tr>
<tr>
<td>metals</td>
<td>218 tons</td>
<td>171 tons</td>
<td>44.0 percent</td>
</tr>
<tr>
<td>yard waste</td>
<td>841 tons</td>
<td>42 tons</td>
<td>4.76 percent</td>
</tr>
<tr>
<td>food waste</td>
<td>487 tons</td>
<td>0 tons</td>
<td>0 percent</td>
</tr>
<tr>
<td>other organics</td>
<td>500 tons</td>
<td>0 tons</td>
<td>0 percent</td>
</tr>
<tr>
<td>other waste</td>
<td>158 tons</td>
<td>0 tons</td>
<td>0 percent</td>
</tr>
<tr>
<td>special wastes</td>
<td>27 tons</td>
<td>0 tons</td>
<td>0 percent</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3,927 tons</td>
<td>255 tons</td>
<td>6.1 percent</td>
</tr>
</tbody>
</table>

Source: EMCON Associates, 1990

Problems and Opportunities

P: Residents in Exeter generate a significant amount of food waste that could be composted but instead ends up in a county landfill.

O: The Southwest Exeter Specific Plan could incorporate into its design guidelines a standard for the type and location of compost bins that can be
FOUR - PROBLEMS AND OPPORTUNITIES

provided for single family dwellings.

P: Residents in Exeter generate a significant amount of green waste that could be composted but instead ends up in a county landfill.
O: The Southwest Exeter Specific Plan will reduce the amount of lawn area in the front yards of residential development.

WATER CONSERVATION

In 2003, the City of Exeter consumed 826 million gallons of water, an increase from 2002’s 813 million gallons. Usage in 2003 peaked in the month of July, 118.9 million gallons, and hit a low in February of 32.9 million gallons. These figures included usage by residential, commercial, public, quasi-public and industrial uses. It is estimated that approximately 90 percent of Exeter’s annual water consumption is the result of residential users. During the winter months, Exeter’s residential units averaged between 220 and 290 gallons per day; during the summer months, this average soars to 680 to 740 gallons per day. Most of this increased demand is attributed to outdoor irrigation.

Conservatively, 50 percent of the lot area of a typical single family home is devoted to landscaping - lawn, trees, beds, gardens, and potted plants. The balance of the lot contains the residence, hardscape (driveway, walkways, a swimming pool, patio, etc.) and sometimes an accessory building. The amount of landscaping for multi-family development is much lower, about 10 to 20 percent of the lot area.

If Exeter can implement water conservation strategies that will reduce the water demand for landscaping irrigation, numerous benefits can be realized,
including reduced city costs for pumping and conservation of ground water.

Problems and Opportunities

P: Excessive use of water resources in the Valley can cause an overdraft of the underlying aquifer and can increase the monthly cost of domestic water in Exeter as new wells are developed and old wells are upgraded.

O: The Southwest Exeter Specific Plan will incorporate into its design guidelines water conservation standards for development within the planning area. These standards will include the following design features: 1. All landscaped medians, parkways and roundabouts will contain trees with underlying mulch. Lawn, shrubs, groundcover and flowers will be prohibited unless the plants are xerophytic and are watered with a drip irrigation system; 2. Not more than 50 percent of the landscaped area of a residential front yard shall contain turf. It is recommended that the type of turf not demand great amounts of water. 3. Multi-family and commercial development shall incorporate xerophytic plant material and irrigation systems that conserve water; 4. Development shall be required to integrate water barrels into their rain gutter system; 5. Prior to the installation of landscaping in any development, the soil shall be properly treated to insure maximum water penetration; and 6. All beds shall be covered with mulch to reduce water loss and maintain soil moisture.
The US Environmental Protection Agency classifies air pollution in the San Joaquin Valley Valley Air Basin, composed of eight counties, as serious for ozone and fine particulate matter (PM10), and moderate for carbon monoxide. The San Joaquin Valley is second only to the Los Angeles basin in terms of “severe” air pollution conditions (20).

Transportation Control Measures

To meet state and federal air quality standards, the District must rely on local governments to implement strategies to reduce air emissions. One of the cornerstones of this goal is the implementation of transportation control measures (TCM). TCMs are defined as any program to reduce vehicle trips and miles traveled, or to increase average vehicle ridership. The California Clean Air Act (CCAA) defines transportation control measures (TCMs) as:

“any strategy to reduce vehicle trips, vehicle use, vehicle miles traveled, vehicle idling, or traffic congestion for the purpose of reducing motor vehicle emissions”. Most of the recommendations under Planning Area Design are considered to be TCMs. There are numerous TCMs that reduce vehicle emissions but are outside the scope of this plan, including alternative work schedules, use of telecommunications equipment and rideshare programs.” (21)

The two primary TCM features detailed in the Southwest Exeter Specific Plan are the bike/pedestrian pathway that will follow the Locust-Grove Ditch alignment and the Plan’s circulation network that promotes “connectivity” and lower traffic speeds with fewer full stops.
In 1990, the California Air Resources Board concluded that mobile sources comprised a substantial portion of the pollutant inventory in the San Joaquin Valley – 56 percent of the NOx, 31 percent of the ROG, 70 percent of the CO and 34 percent of the PM10. The Air Resources Board concluded that although motor vehicles are getting cleaner, the rapid growth in population and the increase in vehicle miles traveled (VMT) has somewhat offset improvements in emission controls associated with engines and tailpipes. From 1990 to 2020, the Air Resources Board projected that the population in the Valley would increase by 220 percent while the VMT would be double this figure.

Although motor vehicles are getting cleaner, the rapid growth in population in the Valley and the increase in vehicle miles traveled (VMT) has somewhat offset improvements in emission controls associated with engines and tailpipes.

California Air Resources Board

Failure to reduce mobile source emissions will result in numerous health and economic problems. Poor air quality adversely impacts persons with respiratory problems, especially young children and senior citizens. Failure to reduce emissions could discourage economic investment in the Valley as well as causing some existing businesses to move to other regions in the country where air quality in better.

The best “snapshot” of how people in Exeter and other Tulare County cities are affecting their air quality is detailed in the 2000 US Census, which describes people’s travel patterns, modes of transportation and commute times.
Table No. 4
Travel Patterns in Tulare County

<table>
<thead>
<tr>
<th>Place of Work</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>L</th>
<th>P</th>
<th>T</th>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work in town</td>
<td>35%</td>
<td>21%</td>
<td>13%</td>
<td>37%</td>
<td>57%</td>
<td>45%</td>
<td>60%</td>
<td>25%</td>
</tr>
<tr>
<td>Work in another town</td>
<td>34%</td>
<td>72%</td>
<td>82%</td>
<td>59%</td>
<td>34%</td>
<td>44%</td>
<td>31%</td>
<td>72%</td>
</tr>
<tr>
<td>Work in another county</td>
<td>31%</td>
<td>7%</td>
<td>5%</td>
<td>4%</td>
<td>8%</td>
<td>10%</td>
<td>9%</td>
<td>3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode of Travel</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>L</th>
<th>P</th>
<th>T</th>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>motor vehicle</td>
<td>69%</td>
<td>74%</td>
<td>71%</td>
<td>60%</td>
<td>71%</td>
<td>79%</td>
<td>79%</td>
<td>61%</td>
</tr>
<tr>
<td>carpool</td>
<td>22%</td>
<td>17%</td>
<td>23%</td>
<td>31%</td>
<td>21%</td>
<td>14%</td>
<td>12%</td>
<td>30%</td>
</tr>
<tr>
<td>bus</td>
<td>>1%</td>
<td>>1%</td>
<td>>1%</td>
<td>>1%</td>
<td>>1%</td>
<td>1.3%</td>
<td>1.1%</td>
<td>1.2%</td>
</tr>
<tr>
<td>bicycle</td>
<td>1.2%</td>
<td>1.0%</td>
<td>>1%</td>
<td>1.4%</td>
<td>>1%</td>
<td>>1%</td>
<td>>1%</td>
<td>1.1%</td>
</tr>
<tr>
<td>walking</td>
<td>2.8%</td>
<td>3.7%</td>
<td>1.4%</td>
<td>2.8%</td>
<td>2.1%</td>
<td>1.5%</td>
<td>1.5%</td>
<td>3.3%</td>
</tr>
<tr>
<td>work at home</td>
<td>2.0%</td>
<td>3.3%</td>
<td>1.4%</td>
<td>3.3%</td>
<td>2.6%</td>
<td>2.8%</td>
<td>3.3%</td>
<td>3.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commute Time</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>L</th>
<th>P</th>
<th>T</th>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>median travel time (min.)</td>
<td>24</td>
<td>23</td>
<td>26</td>
<td>28</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>over one hour</td>
<td>3.8%</td>
<td>6.7%</td>
<td>7%</td>
<td>11%</td>
<td>6.7%</td>
<td>4.6%</td>
<td>4%</td>
<td>5.1%</td>
</tr>
</tbody>
</table>

Source: 2000 US Census
D=Dinuba; E=Exeter; F=Farmersville; L=Lindsay; P=Porterville; T=Tulare; V=Visalia, W=Woodlake

Encouraging people to drive less, rideshare or seek alternative modes of transportation is difficult. Even when people understand the consequences of their actions (transportation choices) on the Valley’s air quality, they still adhere to their travel habits, even when the price of gasoline has far surpassed two dollars a gallon. There are some bright spots on the horizon. Use of fireplaces has been curtailed, agricultural burning is being replaced with
tilling and shredding, diesel powered pumps are being replaced with electric engines, and the number of hybrid cars being driven in the Valley is increasing. The greatest challenge, however, will be to entice people to walk or ride a bike to their destination or use some form of public transportation. It is important that the above strategies work for without their implementation, the Valley’s air quality will continue to deteriorate causing health and economic problems.

To effectively design programs and strategies that will reduce mobile emissions, it is imperative that decision-makers understand the characteristics of an operating motor vehicle. Vehicles emit different levels of air pollution during three distinct phases of a trip – cold start, running exhaust and evaporative.

“Cold start” emissions occur during the first minutes of a trip when the engine and catalytic converter are operating cold. Relatively high levels of pollution are emitted during this phase of an operating vehicle. The “running exhaust” mode emits relatively low levels of pollution because the engine has warmed up and the catalytic converter is operating at peak efficiency. The “evaporative” phase generates emissions after the vehicle is turned off, as gasoline evaporates into the air from the engine and carburetor.

Total emissions from a vehicle trip depend upon the length and speed of a trip and the number of stops. Based on an understanding of the operating characteristics of a motor vehicle, the following conclusions are provided:

• Once a vehicle has been started and driven for a few miles, much of the adverse impact on air quality has taken place. To minimize adverse impacts on the air environment, strategies should be devised that reduce the number of trips.

• More emissions are released on longer trips than shorter trips. To minimize adverse impacts on the air environment, strategies should be devised that
FOUR - PROBLEMS AND OPPORTUNITIES

reduce trip length.

- Emissions from a warm engine are fewer than emissions from a cold engine. By “linking” second and third trips with the first trip (within one hour), fewer emissions result on a per trip basis. To minimize adverse impacts on the air environment, strategies should be devised that aggregate destination points—shopping, banks, offices and service commercial uses; and schools, day-care centers, churches, parks and residential uses.

Since 1950, California and the Valley have been designed for the automobile—freeways, wide local streets, acres of parking lots for shopping centers and office complexes, signalized intersections, and last but not least, the two-car and three-car garage.

To effectively minimize development’s impact on the air environment, land use should be linked to circulation and transportation networks. As an example, high density residential development could incorporate a bus stop into the design of the project, making it convenient for residents of that development to utilize public transportation. Linking residential development to commercial development with a pedestrian or bike path would be another example. People might opt to walk or bike to the commercial center rather than drive their car.

Problems and Opportunities

P: People sometimes refrain from walking because a safe, well designed pedestrian pathway is lacking.
O: The Southwest Exeter Specific Plan will incorporate streets that are “pedestrian-friendly” – wide sidewalks, bulbouts at intersections, narrow to slow traffic speed, well lit and shaded with trees.

P: Persons driving from one neighborhood destination to another, or from the
FOUR - PROBLEMS AND OPPORTUNITIES

neighborhood to a destination beyond the neighborhood may record longer travel times and trip lengths because the neighborhood lacks a design that provides for connectivity.

O: The Southwest Exeter Specific Plan will design street patterns that promote connectivity - multiple routes to destinations thereby reducing the trip length and travel time.

P: People sometimes refrain from biking because a safe, well designed bikepath is lacking.
O: The Southwest Exeter Specific Plan will provide for a bikepath network that links all destinations within the planning area thereby promoting the use of bikes.

P: Persons often drive or are driven, as is the case with school-aged children, to a destination because the distance is too great to walk or ride a bike.
O: The Southwest Exeter Specific Plan will encourage walking and bicycling by locating parks and schools towards the center of the planning area, and high density residential development near commercial uses.

P: Faster driving speeds create more air pollution and promote unsafe driving conditions.
O: Promote slower driving speeds by narrowing roadways, installing bulbouts and roundabouts, and curving the street where possible.

PUBLIC TRANSIT

Only a small percentage of people utilize public transportation in Exeter, less than one percent. In fact, this is the case for most of the San Joaquin Valley and to a lesser extent, California. Low density development patterns
can not support any type of transit service, however, as residential densities increase, four to eight dwelling units per acre, bus service could be supported. When higher residential densities are combined with commercial activity centers, such as shops, offices, and eating establishments, the ridership of public transit can be improved.

Less than one percent of Exeter’s population utilizes public transportation.

U.S. Census, 2000

Problems and Opportunities

P: Often times the public will not take advantage of bus service because the location of bus stops are unknown or inconveniently located.

O: Provide bus stops throughout the planning area. These stops should be equally spaced throughout the planning area, and they should be located on a
major street that includes a turnout.

P: Often times the public will not wait at a bus stop because of inclimate weather or they are without comforts - no seating, dirty or lack protection from the sun.

O. Require bus stops to be well maintained and designed, containing comfortable seating that is protected from the elements.

ZONING STRATEGIES FOR AIR QUALITY

There are numerous zoning strategies that can be employed that will have a positive affect on air quality. Residential zone classifications that allow higher residential densities help support a more effective and efficient public transportation system. Placing high density residential zone districts near or adjacent to non-residential uses like schools, parks, offices and shopping centers reduces vehicle trip lengths and may even promote walking or bicycling. It will also serve to aggregate destination points thereby reducing scattered vehicle trips.

More unique zoning strategies that will have a positive impact on air quality include mixed use development where residential living units are mixed in with retail and office uses; home occupations where a business in conducted out of a home but the home is located in a residential neighborhood; and live-work units where a person can live behind or above their business and clients or shoppers are allowed to come to the business site. Currently, only one of these zoning strategies is provided for in Exeter’s zoning ordinance, home occupation permits.

These zoning strategies reverse the current job-housing imbalance that exists in Exeter. In 2000, over 79 percent of Exeter’s labor force commuted out of
town for work. Among the eight cities in Tulare County, only Farmersville had a higher commute percentage – 87 percent. Persons living in Exeter are required to travel to other locations for employment. The median commute time for the Exeter workforce was 23 minutes – the time it takes to drive to Visalia. Close to seven percent of the workforce had a commute time of one hour or more.

This jobs-housing imbalance places more traffic on roadways, creates more air pollution and results in a lower quality of life standard because time during the day must be devoted to the “commute”. In addition to air pollution, other negative impacts include wear and tear on roads as well as increased fuel consumption.

Seventy-nine percent of Exeter’s labor force commuted out of town for work. U.S. Census, 2000

Cities should provide a balance between jobs and housing so persons are not having to commute out of town for work. The State of California, Department of Housing and Community Development, suggests that cities should strive for a jobs to housing ratio of 1.5 jobs for every housing unit.

Based on data from the 2000 US Census, Exeter had a jobs to housing ratio of 1.23:1 – (1.23 jobs per dwelling unit). This ratio is close to the State’s optimum ratio, however, based on the census data above regarding “place of work”, it seems that most of the jobs are outside of Exeter thereby requiring persons to commute.
Problems and Opportunities

P: Most of the persons employed in Exeter work out of town. Their commute to work generates more air pollution than if they worked in town.
O: Add a mixed-use zone district to the Exeter Zoning Ordinance. This zone district may provide opportunities for jobs to be created in town.

P: Many persons would like to work out of their house and be allowed to have clients visit their business.
O: Amend the Exeter Zoning Ordinance to add live-work units as a conditional use within certain residential zones and the central commercial district.
This chapter presents the goals, objectives, policies, and actions of the Southwest Exeter Specific Plan. They were framed by a citizen-centered process that utilized a citizen advisory committee to provide direction to planning staff on planning matters after reviewing and discussing planning topics detailed in Chapter Four: Problems and Opportunities.

Definitions of the above planning terms and examples are provided below.

Goals are overall direction-setting expressions of the Specific Plan's intent. They represent an ideal end-condition expected in the planning area.

An Objective is a specific end, condition or state that is an intermediate step toward attaining a goal.

Policies are specific statements that guide decision-making and indicate a clear commitment of the local legislative body and staff. A policy is a more specific direction-setting statement than a goal statement.

Actions are specific tasks that will implement a policy. Typically, an action may require a staff person, a committee, a decision-making body, or all three, to complete one or more tasks before the action is considered implemented.
FIVE – GOALS, OBJECTIVES, POLICIES AND ACTIONS

GOAL

The goal of the Southwest Exeter Specific Plan will be to create an integrated neighborhood of housing, parks, schools and shopping that is pedestrian-oriented, visually uplifting, conservation-mined, effectively served with infrastructure and public services and is respectful of Exeter’s past and present values.

OBJECTIVES

The following objectives of the Southwest Exeter Specific Plan are:

• implement Exeter’s General Plan for the geographical area covered by this specific plan;

• create opportunities for new, well-designed commercial and residential development in Exeter;

• minimize the specific plan’s impact on the environment;

• install infrastructure that will effectively serve development in the planning area;

• construct for a range of housing types within the planning area consistent with Exeter’s Housing Element; and

• guide development within the planning area in a manner that is consistent with Exeter’s community values and historical past.
The following policies and actions are an expression of the planning concepts and strategies fashioned by the specific plan advisory committee. They represent the “directions” on how to implement the Southwest Exeter Specific Plan. Chapter Ten, Design Guidelines and Development Standards, contains the Specific Plan’s “blueprints”, which illustrate for the reader how a particular improvement should be built.

Policy 1. New development shall be designed in a manner that creates neighborhoods that are safe, create a “sense of place” and are connected to the larger community.

Development today typically occurs in single use clusters with a complete separation of land uses - single family residential subdivisions are separate from apartments, which are separate from commercial shopping centers and offices. This pattern of separation creates almost a complete dependence on the automobile to get from one place to another. This in turn creates a host of secondary impacts such as air pollution, increased consumption of fuels, loss of community, and poor health.

Actions

a. The Specific Plan’s land use and circulation maps will be designed so that all land uses will be interconnected with streets, sidewalks and pathways.

b. Design guidelines and development standards will be prepared for buildings and improvements that will be constructed in the planning area.
Policy 2. New development in the planning area shall be designed to be “pedestrian-friendly” - promoting walking, bicycling and social interaction with neighbors.

Since the late 1940’s cities have planned development to accommodate the automobile - at the expense of the livability and quality of our urban environment. This plan urges a return to development patterns that respect the needs of pedestrians and bicyclists and the sanctity of neighborhoods.

Actions

a. The Specific Plan’s land use and circulation maps will be designed so that all land uses will be interconnected with streets, sidewalks and pathways.

b. Design guidelines and development standards will be prepared for pedestrian improvements that will be constructed in the planning area.

Policy 3. Development shall be designed and executed in a manner that efficiently utilizes land within the planning area to reduce urban sprawl and minimize its impact on surrounding agriculture.

The economy of Exeter and indeed the San Joaquin Valley, stands on the shoulders of agriculture. However, current development practices essentially treat agricultural land as vacant land that can be readily developed. This Plan recommends modifying Exeter’s current residential density patterns by increasing the overall residential densities in the planning area, causing the land to be used more efficiently. This Plan also encourages development to be phased thereby precluding the premature conversion of agricultural land to urban uses.
Actions

a. The land use plan will provide for an overall residential density of five dwelling units per acre. The land use plan will provide for a variety of residential densities, ranging from two units to 29 units per acre.

b. The land use plan shall phase residential development in the planning area, using Exeter’s 10-year annexation line as the demarcation between short- and long-term residential development.

c. The land use plan will provide locations for high density residential development within the planning area.

Policy 4. Development shall be designed in a manner that minimizes its impact on air quality.

Air quality in Exeter and the San Joaquin Valley are precious commodities. Air quality experts have predicted that the San Joaquin Valley - with its bowl-like topography, has the potential for the worst air pollution in the United States. Because current development patterns are so dependent on the use of the automobile, the Valley’s prospect for improved air quality remains in jeopardy. This plan presents design strategies for development that will reduce congestion, promote slower driving speeds, improve the feasibility of walking and cycling, and reduce the need for some automobile trips.

Actions

a. The circulation plan will be designed so that vehicular and pedestrian connectivity is maximized.
b. The circulation plan will delineate a bikepath that will follow the Locust-Grove Ditch alignment.

c. Transit shelters will be located throughout the planning area.

d. The land use plan will locate high destination uses, like parks and schools, in central locations. It will also locate high density residential development near commercial uses.

e. The circulation plan will employ a grid street pattern. Existing city streets east of Belmont Avenue, including Maple, Chestnut, Firebaugh, Powell, and Glaze Avenues, will be extended west to the Elberta alignment. The two proposed north/south boulevards and Elberta Street will be extended south from Visalia Road to connect with Glaze Avenue.

f. The land use plan will delineate four park sites in the planning area, equally spaced from each other.

g. The land use plan will provide for a school site that is centrally located in the planning area.

Policy 5. Development shall be designed to promote energy conservation.

Buildings use more than one-third of the energy consumed in the United States. Heating and cooling systems account for 60 percent of this energy; lights and appliances use the other 40 percent. By carefully applying site, building and landscaping design principles, energy is conserved, the environment is improved and the economy is strengthened due to less reliance on foreign fossil fuels.

A report written for the California Energy Commission entitled, Passive Solar
FIVE - GOALS, OBJECTIVES, POLICIES AND ACTIONS

Marketing Strategy, found that new homes that incorporated a host of passive solar design features experienced significant heating and cooling savings. In this report, the study found that by utilizing “sun-smart” home design, homes built in the Central Valley could experience a 33 percent savings in heating costs and 70 percent saving in cooling costs!

Actions

a. The circulation plan will be dominated by east/west roadway alignments, which provides for passive solar strategies. Eighty percent of the roadways in the planning area will be oriented east and west.

b. Design guidelines and development standards will be prepared that will promote energy conservation, including narrow tree-lined streets, east/west aligned streets, and reduced glazing on west-facing walls.

c. All streets in the planning area will be tree-lined with deciduous tree species. Paved street widths will be reduced from 40 feet to 36 feet; cul-de-sac streets from 38 feet to 32 feet.

d. Eighty percent of garages will be situated on the west side of a residential dwelling that is located on an east/west street and on the south side of the residential dwelling on a north/south street.

e. Ground-mounted heating/cooling units will be situated on the east side of a residential dwelling that is located on an east/west street and on the north side of the residential dwelling on a north/south street.

f. Minimal glazing will be permitted on west-facing residential walls.

Policy 6. Public open space shall be an integral feature in the
FIVE - GOALS, OBJECTIVES, POLICIES AND ACTIONS

Planning area. Open space should be accessible, visually-pleasing and safe.

Public open space - parks, pathways, and plazas - can function as a unifying feature in neighborhoods. Properly designed, public spaces can be a real asset for the neighborhoods they serve. Parks will offset increased densities that are proposed by this plan by providing readily accessible recreational spaces for young children and their parents; tree-lined pedestrian pathways will provide for a safe and delightful route for walking or biking from one part of the planning area to another; and plazas in shopping centers will create public gathering spots for outdoor activities like dining and meetings with friends.

Actions

a. The land use plan should delineate park sites within the planning area that are accessible to all residents of the planning area.

b. Design guidelines and development standards will be prepared for parks and open space uses.

Policy 7. Development shall be designed to promote water conservation.

If Exeter can implement water conservation strategies that will reduce water demand for landscaping irrigation, numerous benefits can be realized, including reduced city costs for pumping ground water and “overdrafting” the Valley’s aquifer. A review of Exeter’s residential water demands indicate that water use increases dramatically from winter to summer. For example, in 2003, the average home in Exeter used 220 gallons of water per day in February and 740 gallons per day in July. Most of this increased demand can be attributed to outdoor irrigation. The Specific Plan proposes strategies that will significantly
reduce this summer water use.

Actions

a. Residential development shall be required to incorporate rain barrels into the design of residential developments.

b. Landscaping throughout the planning area shall incorporate water conservation design measures.

c. The use of turf in the planning area shall be limited, especially in residential front yards, parkways and medians.

d. The incorporation of xerophytic plant material shall be encouraged throughout the planning area.

Policy 8. Development in the planning area shall connect to and support the greater Exeter community.

It is important that the Specific Plan provide for the efficient flow of people from the planning area to the larger community, and that the planning area be integrated into the greater Exeter area. Maximizing connectivity using streets, bikepaths, and sidewalks will accomplish this policy.

Actions

a. The Specific Plan’s land use and circulation maps will be designed so that all land uses will be interconnected with streets, sidewalks and pathways. In addition, connection to the downtown and the greater Exeter area will be maximized by extending streets from adjacent neighborhoods through the planning area.
Policy 9. Development in the planning area should reflect an architectural theme or style, using common building materials or design elements that relate to Exeter’s historical past, thereby creating a “sense of place.”

The plan argues that design plays an important role in the long-term success of the planning area including real estate values. People will make real estate decisions based on the appearance of the house, the neighborhood and the surrounding streetscape. Good architecture and attention to design pertaining to elements like walls, trees, street signs, lights, and pavement, will create a planning area that exudes a “sense of place”.

A condominium project in Palo Alto, California, that has embraced a Craftsman style of architecture. Note the attention to design details like lighting and landscaping.

Actions
FIVE - GOALS, OBJECTIVES, POLICIES AND ACTIONS

a. Design guidelines and development standards will be prepared for residential and commercial development that will be constructed in the planning area.

b. The construction of production housing will be encouraged to use an architectural theme.

Policy 10. The planning area should provide for a mixture of housing by type, size, affordability and accessibility.

In 2000, the median rent in Exeter was $522 per month and the median home value was $94,800. Of the cities in Tulare County, Exeter had the third highest median rent and median home value. The planning area should provide affordable housing for a wide range of households, including firefighters, police officers, secretaries, teachers, packinghouse workers and persons with unique housing needs, like female heads of household, persons with disabilities, and large families. To accomplish this goal, the specific plan will provide for a number of different housing types – apartments, patio homes, estate homes, townhouses, and traditional tract housing.

Actions

a. The land use plan will provide for a range of housing types, including apartments, cottage homes, and traditional neighborhood homes.

b. The land use plan will provide for residential densities that support housing that is affordable.

c. Unique residential design strategies (e.g. zero-lot line and alley-loaded homes) will be employed throughout the planning area to promote affordable housing.

5-11
Exeter has encouraged the construction of Craftsman style homes on small lots, 3,500 to 4,000 square feet. This product has become Exeter’s entry-level

Policy 11. Recycling, reuse and composting should be promoted in order to reduce the volume of solid waste generated by the planning
In 2003, Exeter residents generated 9,204 tons of solid waste. Of this total, 6,465 tons went to the landfill and the balance was either recycled, 720 tons (7.8 percent), or composted, 2,019 tons (21.9 percent). This material along with the waste generated by the rest of the county reduces the life expectancy of the landfills and it introduces additional contaminants into the aquifer. Any reduction in solid waste emanating from Exeter will help mitigate the problems associated with landfill capacity and ground water contamination.

Actions

a. Developers may encourage composting by incorporating compost bins in development.

b. Green waste generated by the planning area will be reduced by discouraging the use of turf as a landscaping treatment.

Policy 12. The City of Exeter shall employ a “low-impact development” (LID) approach to the management of storm water runoff generated by the planning area.

The goal of LID site planning is to allow for full development of property while maintaining essential site hydrologic functions. The key to making LID work is to “think small.” Micromanagement techniques utilize small catch basins, residential lots or common areas to distribute and control storm water throughout the planning area. This approach offers significant opportunities for maintaining the site’s key hydrologic functions including, infiltration, depression storage and interception, as well as a reduction in the time of concentration.
Actions

a. All parks in the planning area will serve a dual purpose - park and storm water detention basin.

b. Parkways, medians and trails will be depressed to serve as catch basins for storm water runoff.

c. Streets will have reduced widths. This design feature will reduce storm water runoff generated by street surfaces.

d. Rain barrels will be incorporated into all residential projects.

e. Development should be designed to create depression basins within landscaped areas.

Policy 13. The development of the planning area should not pose a long-term fiscal burden for the City of Exeter.

All development that contains common public areas should be maintained by a lighting and landscaping maintenance district, formed by the City of Exeter. This approach places the maintenance burden on persons or businesses in the planning area and not on the community at-large.

Development impact fees should be set at a level that properly finances public improvements throughout the planning area, including improvements such as water wells, park/pond basins, oversizing of sewer lines, bike paths, signalization, and landscaped medians.

Actions
FIVE - GOALS, OBJECTIVES, POLICIES AND ACTIONS

a. All development in the planning area shall pay development impact fees.

b. All residential development shall form a landscaping and lighting district to pay for the maintenance of common areas and lights.

Many of the parkways in Exeter’s newer residential developments are maintained by a Landscaping and Lighting District.

Policy 14. Schools in the planning area should be centrally located and designed so that they are easily assessable by vehicles, school buses and school-aged children walking or riding their bikes to school.
FIVE - GOALS, OBJECTIVES, POLICIES AND ACTIONS

A school that is centrally located in a residential neighborhood, encourages children to walk or ride to school and it reduces the parents trip length if they are driving their children to school. A centrally located school with well designed drop-off zones and frontage onto more than one street, will assist in reducing air pollution and it will enhance the character of the adjoining neighborhood.

Actions

a. Access to schools should be provided by two or more roadways, a network of adjacent sidewalks and the Locust-Grove Trail.

b. Drop-off zones should be incorporated into the design of the school.

c. Roadways adjacent to schools should be provided with school signage, crosswalk signage, and proper lighting to insure safe passage of students traveling to and from school.

Policy 15. The planning area should be well-lighted, colorful, interesting and cool during the summer, and it should be built with local building materials (granite, brick, native rock) and where possible, incorporate water features.

Design details. It is these elements that often attract a buyer to a particular neighborhood or a retailer to a particular shopping center. A tree-lined street, a fountain, a man-made lake, a unique park with colorful vegetation and elevation changes, or a wall using native stone, are all features that can be “eye-catching” and useful in selling the neighborhood or shopping center.
A water feature that is centrally located and incorporates native materials and landscaping is a selling point for this development in Palo Alto, California.

Actions

a. Design guidelines and development standards will be prepared for residential and commercial development.

b. All development design shall be prepared by a licensed architect, landscape architect or engineer.

c. To determine compliance with the design strategies of the Specific Plan, the Planning Commission will evaluate each development using the Specific Plan Evaluation Form.

Policy 16. Streets in the planning area should effectively connect one neighborhood to another and to the community at-large. They should also be visually-pleasing; they should provide for bike and
pedestrian traffic; and they should be designed so that they are safe and form a grid pattern to improve connectivity.

A goal of this specific plan is to fashion a highly-connected transportation system that will provide choices for drivers, bicyclists, and pedestrians; promote walking and cycling; connect neighborhoods to each other and to local destinations such as schools, parks, and shopping centers; reduce vehicle miles of travel and travel times; improve air quality; reduce emergency response times; increase effectiveness of municipal service delivery; and free up arterial capacity to better serve regional long distance travel needs.”

This street in Claremont, California, provides for bike, pedestrian and vehicular traffic.
FIVE - GOALS, OBJECTIVES, POLICIES AND ACTIONS

Actions

a. All streets shall be planted with street trees of different species.

b. Through streets shall be encouraged in all developments.

c. Cul-de-sac streets shall be designed to “kiss” adjacent streets or the Locust-Grove Trail.

d. Development shall be linked to adjacent development by streets, sidewalks, trails and pedestrian pathways.

Policy 17. Infrastructure that serves the planning area should be master planned to insure that the entire area can be effectively served and that the development impact fees charged to developers are adequate to finance the installation of the improvements detailed in the master plans.

For the planning area to be developed in a proper and efficient manner, the city’s sewer, water and storm drainage systems must be master planned. These master plans will detail for the development sector their infrastructure responsibilities and it will guide Exeter in the formulation of its 5-year capital improvement program.

Actions

a. An amendment to Exeter’s sewer master plan shall be prepared by the city engineer for the planning area.

b. An amendment to Exeter’s water master plan shall be prepared by the city engineer for the planning area.
FIVE - GOALS, OBJECTIVES, POLICIES AND ACTIONS

c. An amendment to Exeter’s storm drainage master plan shall be prepared by the city engineer for the planning area.

Policy 18. Commercial development within the planning area should be phased, and provide for uses that are not commonly found in Downtown Exeter.

Of the parcels of land that front onto Visalia Road, the easterly one-half is designated for commercial development and the westerly one-half for rural residential uses. The commercially designated property, which encompasses almost 19 acres, could support regional commercial uses. Potentially, these uses could compete with existing uses in the downtown area thereby causing a community asset to become less viable. For this reason, uses proposed for this commercial area should avoid proposing uses traditionally found in downtown areas.

Of the parcels of land in the planning area that front onto Visalia Road, the westerly one-half are designated for rural residential uses by the General Plan. From a land use perspective, it would be reasonable that this acreage, encompassing just over 17 acres, would eventually be designated for commercial development, requiring a general plan amendment. However, so as not to place too much commercial land on the market, and in order to assure that the eastern half of the Visalia frontage is developed first, the Specific Plan should phase commercial development along Visalia Road. Towards this end, the western half of the Visalia Road frontage will remain designated “rural residential” until such time as the easterly half is completely developed with commercial uses.

Actions

a. The land use plan shall show the westerly half of Visalia Road
frontage as “commercial reserve”. This 17 acres will remain in reserve until such time as the easterly half of the commercial property along Visalia Road has been built out.

Policy 19. Commercial development along Visalia Road should be linked to the larger planning area, it should have distinguishing design features and it should enhance Exeter’s sales tax revenue.

Connectivity between the commercial corridor along Visalia Road and the larger planning area will be facilitated by north/south and east/west roadways. The north/south roadways will link commercial lands along Visalia Road with residential land to the south. The east/west roadway that bisects the commercial corridor will link Belmont Road with Elberta Road. This roadway will also allow drivers to travel from one store to another without having to enter and exit Visalia Road.

Various design features and elements will be integrated into the commercial development that will enhance its marketability, like tree-lined entryways, landscaped parking lots, well-designed store fronts, pedestrian plazas, and properly scaled signs.
A commercial development in Upland incorporates water, an arbor and palm trees.

Actions

a. Each commercial development shall present a cohesive architectural design.

b. Commercial development shall be linked to adjacent development by roadways, trails, sidewalks and/or pedestrian pathways.

c. Commercial development shall incorporate a unique design feature that brings attention to the project.

Policy 20. The planning area should be designed so that public services, like police, fire and solid waste, can be properly and efficiently delivered to clients within the area.
Connectivity within the planning area and to the larger Exeter area will permit public services to access all parts of the planning area. Roadways in the planning area will generally be through streets, assessable from two directions, and they will be wide enough to accommodate the larger service vehicles, fire engines and solid waste collection trucks. In regards to solid waste collection, this pickup service will only be provided on streets and not within alleys.

Actions

a. The circulation map will be configured so that all land uses will be interconnected with streets, sidewalks and pathways.

b. The circulation design for residential subdivisions should minimize the use of cul-de-sacs, provide for two or more access points and connect to adjacent subdivisions.

c. Glaze Avenue and Elberta Street shall be designed as truck routes thereby permitting truck traffic to be removed from Visalia Road and Firebaugh Avenue. This rerouting of truck traffic will cause trucks to drive around the planning area rather than through it.

Policy 21. Building and non-building improvements designed for and constructed within the planning area should incorporate the design principles that form the foundation of the Southwest Exeter Specific Plan, including connectivity, conservation, context and good urban design.

Actions

a. Design guidelines and development standards will be prepared for residential and commercial development that will be constructed in the
FIVE - GOALS, OBJECTIVES, POLICIES AND ACTIONS

planning area.

b. All development design shall be prepared by a licensed architect, landscape architect or engineer.

c. To determine compliance with the design strategies of the Specific Plan, the Planning Commission will evaluate each development using the Specific Plan Evaluation Form.
For the traffic engineer, transportation is about moving cars along a circulation system comprised of a network of roadways. Reduced congestion, efficient traffic speeds and proper turning movements at intersections, are the primary objectives of the traffic engineer. Transportation, however, is more than moving cars along roadways. Lewis Mumford probably described transporation best when he said:

“The purpose of transportation is to bring people and goods to places where they are needed, and to concentrate the greatest variety of goods and people within a limited area, in order to widen the possibility of choice without making it necessary to travel. A good transportation system minimizes unnecessary transporation; and any any event, it offers change of sppe and mode to fit a diversity of human purposes.” (x)

Maximizing connectivity, encouraging the use of alternative modes of transportation and promoting walking and bicycling is a cornerstone of the Circulation and Transportation Element of Southwest Exeter Specific Plan. The Element has been designed to achieve maximum connectivity throughout the planning area as well as with Exeter at-large. Further, the Element proposes to facilitate the use of various transportation systems available to persons living in Exeter, including Exeter’s Dial-a-Ride, Tulare County Transit’s intra-city bus system and Visalia’s City Coach transit service. These systems will allow persons to utilize public transportation to travel to locations in Exeter and to neighboring cities like Visalia and Porterville.

Early city design had streets arranged in grid patterns, typically running east/west and north/south. Blocks were relatively short and street frontage for buildings was maximized. In the the 1930’s, the Federal Housing Administration (FHA) published Planning Neighborhoods for Small Houses wherein the cul-de-sac street was encouraged and the grid pattern was discouraged. What planners and traffic engineers have since discovered with the shift away from the grid pattern is that it is difficult to get from one location to another thereby using more gas, generating more air pollution and wasting more time. The Specific Plan’s circulation design will utilize a “grid” street pattern that implements the objectives best described in a Connectivity

6-1
SIX: CIRCULATION AND TRANSPORTATION ELEMENT

Ordinance (1999) adopted by Cary, North Carolina, which states:

“The purpose of the Ordinance is to support the creation of a highly connected transportation system within the Town in order to provide choices for drivers, bicyclists, and pedestrians; promote walking and cycling; connect neighborhoods to each other and to local destinations such as schools, parks, and shopping centers; reduce vehicle miles of travel and travel times; improve air quality; reduce emergency response times; increase effectiveness of municipal service deliverer; and free up arterial capacity to better serve regional long distance travel needs.”

The Circulation and Transportation Element has also been designed to maximize pedestrian connectivity using sidewalks and bike paths and to insure that persons using these routes can do so safely, especially school-aged children. These pedestrian improvements link housing to schools, parks, and shopping centers. They also provide opportunities for people to interact with each other as well as improve their health. As an added benefit, walking and bicycling instead of driving also improves air quality.

CIRCULATION

ARTERIAL STREETS

The planning area encompasses only one arterial roadway - Visalia Road. This four-lane roadway, which has a planned right-of-way of 84 feet, links Exeter with the cities of Farmersville and Visalia to the west. Four north/south roadways will connect Visalia Road to the planning area that lies to the south.

Visalia Road will provide two lanes in each direction, turn pockets at selected intersections, a 12-foot landscaped median, and two, 5-foot sidewalks with adjoining parkways. Chapter Ten, Design Guidelines and Development Standards, illustrates the appearance of this arterial roadway.

COLLECTOR STREETS

The planning area is laced with collector roadways. They form the core of the planning area’s grid street system. The north/south collectors include Elbera
SIX: CIRCULATION AND TRANSPORTATION ELEMENT

Road, Belmont Avenue, and two unnamed boulevards; the east/west collectors will include Fairway Drive, Maple Avenue, Chestnut Avenue, Firebaugh Avenue, Powell Avenue, two unnamed avenues and Glaze Avenue.

The collectors are generally two-lane roadways that have a planned right-of-way width that ranges from 60 to 80 feet. They link one part of the planning area to another thereby permitting the free flow of vehicular, pedestrian and bike traffic.

Collectors provide for one travel lane in each direction, two 7-foot tree-lined parkways, and two 5-foot sidewalks. Class III bike lanes are permitted along all collectors.

Two north/south collectors, Jacobs Place Boulevard and an unnamed boulevard, will have street cross-sections that vary from the standard collector roadway. These boulevards will commit one travel lane in each direction, two 7-foot landscaped parkways, a 20-foot landscaped median and two 5-foot sidewalks. They also wide enough will permit a Class III bike lane.

Glaze Avenue and Elberta Road will serve as a truck route. Trucks entering or leaving Exeter will use this route to drive around the planning area rather than through it.

The two north/south boulevards proposed for the planning area will look similar to this boulevard in Redlands, California.
Chapter Ten, *Design Guidelines and Development Standards*, contains illustrations that details the design features of these collector roadways.

LOCAL STREETS

Local streets link residential blocks to the planning area’s larger collector roadway system. Local streets are often short, narrow, and carry less through traffic than collector roadways. Some of these streets will be cul-de-sacs while others may be only one block long. Local streets are two-lane roadways that have a planned right-of-way width that ranges from 52 to 56 feet. They allow vehicular and pedestrian traffic to move through local residential blocks.

Local streets will provide for one travel lane in each direction, two 7-foot landscaped parkways, and two 5-foot sidewalks. Chapter Ten, *Design Guidelines and Development Standards*, contains illustrations that details the design features of the local roadways.

LANES

Lanes, also known as alleys, will link garages constructed at the rear of residential units to the local street system. These lanes are only intended to serve the blocks of residential units that have rear-loaded garages. Lanes will permit two-way traffic but are very narrow in width, 20 feet. Chapter Ten, *Design Guidelines and Development Standards*, contains illustrations that details the design features of the lanes.
SIDEWALKS
The width of a sidewalk should be in direct proportion to the number of users. A three foot wide sidewalk is adequate for one person, however, if two persons wish to comfortably walk side by side a 5-foot sidewalk should be required according to Anton Clarence Nelessen in his book *Visions for a New American Dream* (1994). Around neighborhood parks a 6-foot sidewalk is recommended because many types of users could be using the sidewalk at any given time, including persons walking, skateboarding or pushing a baby stroller.

LOCUST-GROVE TRAIL
The Locust-Grove Ditch, operated by Consolidated Peoples Ditch Company, flows south from Visalia Road to Glaze Avenue (parallel to Belmont Road) and then west along the Glaze Avenue alignment to the Elberta Avenue alignment. At this point, the Ditch leaves the planning area and flows south. Consolidated Peoples Ditch maintains a 40-foot easement along this waterway.

The Specific Plan requires that the Locust-Grove Ditch be channeled to an underground concrete pipe as development occurs adjacent to the ditch. Over the piped ditch and within the District’s 40-foot easement, the Locust-Grove Trail will be constructed. This Trail will permit persons to walk or ride a bike from one end of the planning area to the other with minimal interference from motorized vehicles. The Trail will contain an 8-foot curve-linear asphalt pathway, pedestrian-scaled lighting, xerophytic landscaping with irrigation and raised crosswalks where the Trail crosses a roadway.
MEDIANs, ROUNDABOUTs, BULBOuTs, ENTRYWAYS AND CROSSWALKS

Medians, which are raised islands in the middle of a street, are a design feature that has many benefits. It can slow down traffic because motorists tend to drive slower when the travel lane is narrower, it separates opposing traffic thereby minimizing head-on collisions, it provides a safe haven for pedestrians crossing the street, it’s an aesthetic feature when planted with street trees, and it can be informative when installed with street signs. Negative issues associated with medians include potential u-turns at the end of medians, cost of construction and maintenance, in delay in response times of public safety vehicles.

Medians are proposed for Visalia Road, Elberta Avenue and the two north/south boulevards that traverse the planning area. Chapter Ten, Design Guidelines and Development Standards, contains illustrations that details the design features of these roadways that contain medians.

This median on the campus of Loyola-Marymont College in California provides for safer traffic movement and is also a visually pleasing feature.
Like medians, roundabouts are an improvement in the middle of an intersection at promotes safer traffic movements – avoiding head-on and broadside collisions. In addition, roundabouts reduce vehicular air emissions because traffic entering a roundabout intersection is required to slow down and merge rather than coming to a complete stop and then proceeding through the intersection. Roundabouts can also serve as a design element. Roundabouts that contain specimen trees can add interest, color and shade to the streetscape thereby making the street more visually pleasing. The negative aspects of roundabouts include confusion regarding right-of-way, cost of construction and maintenance, and delay in response times of public safety vehicles.

Roundabouts come in different dimensions and designs based on the type and sizes of roadways entering the intersection. Tentatively, there are nine roundabouts identified in the planning area. Three are located in a commercial/high density residential district and six are located in residential districts.

Bulbouts are intersection improvements that reduce the width of the travel way through a intersection. The pedestrian is safer because the distance to cross the street in reduced. As an added benefit, vehicular traffic typically slows down because the travel way is narrower. Many bulbouts are designed so that the crosswalk is constructed with a different pavement material (concrete versus asphalt) or color. This modification alerts the motorist that pedestrian traffic is common at these intersections.

Entryway treatments are roadway and wall improvements that distinguish the enterance into a subdivision, neighborhood or shopping center. Treatments include narrowed travel way with a landscaped median and parkways. Other treatments include specimen trees, unique wall and pavement material, and attractive signage. These treatments slow down traffic and serve as an indicator that the pedestrian or driver is entering a special place. These improvements can be costly to install and maintain and they can eliminate on-street parking stalls.

A raised crosswalk is a flat-topped speed bump that extends from curb line to curb line and are typically uniquely marked or treated with special paving material or textures. They slow traffic down and provide a safer crossing for pedestrians or bicyclists. These raised crosswalks will be utilized where
SIX: CIRCULATION AND TRANSPORTATION ELEMENT

streets cross the Locust-Grove Trail.

SCHOOL SAFETY IMPROVEMENTS

School-aged children’s safety as they travel to and from school should be an important consideration in the design of the planning area, the planning area’s school(s) and the circulation improvements that will be installed around a school.

The Specific Plan has provided trails and sidewalks that link the planning area’s school site with balance of the planning area. Traffic calming improvements around the school will also be installed, including raised crosswalks, bulbouts and medians. The design of the school should provide (1) pick-up and drop-off zones that do not cause unsafe traffic conditions, such as parents double-parking or dropping children off on the side of the street opposite the school; (2) a separate bus drop-off zone; (3) high visibility school zone signs; (4) high visibility crosswalks and (5) multiple access points for pedestrians and bicyclists to enter the school grounds.

TRANSIT

Three types of public transportation are available to persons living in Exeter, Exeter’s Dial-a-Ride, Tulare County Transit’s bus system and Visalia’s City Coach transit service. These systems allow persons to travel to locations in Exeter and to neighboring cities like Visalia and Porterville.

Exeter’s Dial-a-Ride operates within the city limits of Exeter, five days per week from the hours of 8:00 a.m. to 4:30 p.m. The system runs two buses – an 18-passenger bus that operates from the hours of 8:00 a.m. to 4:30 p.m. and a 16-passenger bus that operates from 11:00 a.m. to 3:00 p.m.

Tulare County’s intra-city bus system stops in Exeter four times per day as it travels from Visalia through Farmerville and Exeter to Porterville.

Visalia’s City Coach provides bus service to persons wishing to travel to Visalia for shopping, medical or other reasons. Currently, this system operates seven days a week between the hours of 6:30 a.m. and 9:00 p.m.
An effective public transportation system is beneficial both to the public and the environment. For persons who do not drive or can not afford a vehicle, an efficient bus system allows them to travel to various destinations for shopping, medical or social reasons. Also, persons utilizing a public transportation system have less of an impact on the air environment than persons driving their own vehicle.

An effective public transportation system is dependent upon a number of factors, including cost, bus appearance, schedule, convenience, and bus facilities. Most of these factors are outside the control of this Specific Plan, but convenience and bus facilities can be influenced by the Plan. For convenience, the Specific Plan proposes to locate four bus stops in the planning area, equally spaced and located on an arterial or collector roadway. Waiting for a bus can be uncomfortable if it is hot or it is raining. To insure that that the wait is a relatively comfortable, bus stops will be covered and designed to be consistent with the architecture of adjacent development.

The Specific Plan has also designated a “park and ride” site where persons could meet to carpool to work. As gasoline prices increase so will the interest in carpooling.
INTRODUCTION

The Southwest Exeter Specific Plan encompasses a 320-acre planning area that contains eight land use categories two of which also contain a “reserve” subcategory designation. The land use categories are shown on Table No. 5: Land Use Categories and Statistical Data and Exhibit No. 12 Land Use Plan.

Land use development within the planning area will be guided by the development standards of the zone districts that are applied to the planning area and the design guidelines and development standards that are contained in Chapter Ten. Table No. 5, Land Use Categories and Statistical Data, generally describes the potential commercial intensities, residential densities, and population that the planning area will support upon build out.

One land use category that is proposed for the planning area but is not contained in Exeter’s Zoning Ordinance is the mixed-use zone district. This zone district is intended to promote a mix of land use types — residential, office and commercial. The Specific Plan recommends that Exeter’s Zoning Ordinance be amended to add this zone district to the Ordinance once the Specific Plan has been adopted.

LAND USE

The Southwest Exeter Specific Plan is principally a residential community plan. Seventy-five percent of the planning area will eventually be occupied by residential uses. If uses that support residential development are included, such as parks, a school and pedestrian trail, this percentage increases to 87 percent. The balance of the planning area will be devoted to commercial and
office uses. These land use categories line the south side of Visalia Road. Currently, this roadway supports the highest traffic volumes inside the Exeter city limits. This corridor of commercial and office uses are intended to bolster Exeter’s sales tax revenue and generate employment opportunities to improve Exeter’s jobs/housing balance.

Since 1990, Exeter has been very particular about how it grows itself. Controlled growth has been the hallmark of the community. This controlled growth has been achieved through the use of the county’s urban area and urban development boundary lines, the county’s agricultural preserve program (Williamson Act), Exeter’s annexation policy and 10-year annexation line, and finally, Exeter’s General Plan and Zoning Ordinance. These planning tools have allowed Exeter to skillfully promote infill development that is contiguous to existing development and concentric to its downtown. As a result of these policies, Exeter has been left with a limited amount of land that can accommodate commercial and residential development over the next 20 years. This limited pool of land makes the Specific Plan critical in terms of accommodating Exeter’s commercial and residential growth for the next 20 years.

Residential build out of the planning area is estimated to generate 1,277 dwelling units and a population of 3,832 persons. A review of historical building permit information showed that in three separate years – 1986, 1992, and 2004, the city approved close to 100 residential building permits. Using the 100 dwelling units per year figure, the planning area could provide about 13 years of residential growth if only this area were to provide for Exeter’s residential development. However, there are other areas of the city that will also provide for residential development, including the northwest and the northeast quadrants. Factoring these quadrants into Exeter’s future demand for residential acreage, it is reasonable, to assume that they could accommodate seven years of residential growth. In total, approval of the
Specific Plan and development in other areas will provide enough land for residential development for the next 20 years especially if interest rates increase causing building permit activity to decrease.

Exeter has had a limited amount of commercial and office development over the last 20 years. The last shopping center built in Exeter was built across from the planning area on the north side of Visalia Road in the 1970s. The last significant office development occurred in the early-1990s on the north end of Kaweah Avenue. The planning area will initially provide for 367,690 square feet of commercial development and 74,840 square feet of mixed-use development – commercial, office and residential uses. In reserve, the Specific Plan also provides for another 7.47 acres of general commercial development and 7.47 acres of mixed-use development. Comparing these figures with Exeter’s demand for commercial and office acreage over the last 20 years, it is evident that the planning area can provide enough land for commercial and office development for the next 20 years especially given the fact that there are other locations in Exeter that can accommodate this type of development - Kaweah Avenue, Downtown Exeter and other locations on Visalia Road.

SUB-PLANNING AREAS

The planning area contains three identifiable sub-planning areas – the Visalia Road Corridor composed of general commercial, mixed use and medium to high density residential uses; cottage neighborhoods; and traditional residential neighborhoods.

VISALIA ROAD CORRIDOR

This corridor will be developed to maximize internal linkage using roadways, trails and sidewalks, and will be constructed in a manner that will incorporate
visually pleasing buildings, grounds, signs and parking lots. To achieve these objectives, the development of this corridor will be subject to the development standards of the zoning ordinance and the design guidelines and development standards of the Specific Plan.

COTTAGE NEIGHBORHOODS

Cottage neighborhoods are distributed throughout the planning area. Access to these neighborhoods will be provided by collector roadways that will connect them to other sections of the planning area and to Exeter at-large. These neighborhoods are designed to front onto a neighborhood park and to be pedestrian-friendly. Lots in these neighborhoods will average approximately 5,500 square feet. Access to these lots will be provided by tree-lined local streets and lanes, which will provide access to rear-loaded garages. Homes constructed in these neighborhoods will emulate an architectural style as well as contain many conservation related improvements.
Figure No. 3: Alley-Loaded Cottage Homes

The Southwest Exeter Specific Plan encourages the use of lanes on lands designated for single family development. This design strategy permits narrower lots and provides for a streetscape that is free of garage doors and driveways.
The Southwest Exeter Specific Plan encourages the use of zero lot line design as a design strategy that promotes affordable housing and a streetscape that is visually dominated by the home and not by the garage.
TRADITIONAL NEIGHBORHOODS

Traditional neighborhoods are distributed throughout the planning area. Access to these neighborhoods will be provided by collector roadways that will connect them to other sections of the planning area and to Exeter at-large.

Figure No. 5: Traditional Homes with Recessed Garages

The Southwest Exeter Specific Plan encourages home designs that place the garage behind the face of the home. This design strategy showcases the architectural design of the home and not the garage.
A zero lot line design with a garage that is setback behind face of home provides unique design opportunities for side yard as well as rear yard areas. This design strategy permits narrower lots that can promote more affordable housing.

Lots in these neighborhoods will average approximately 7,500 to 10,000 square feet. Access to these lots will be provided by tree-lined local streets. Some of
the homes constructed in these neighborhoods will emulate an architectural style as well as contain many conservation related improvements. These neighborhoods will be designed to be pedestrian-friendly and aesthetically pleasing.

PARKS

Four neighborhood parks are planned for the area. Each park will contain three activity sub-areas. Sub-area one will contain playground equipment, benches, a picnic arbor and other improvements that will enhance family outings. Sub-area two will be a storm water retention/detention pond that will be surrounded by a chain-link fence that is screened with landscaping. There may be an opportunity to install a fountain in this pond for aeration and aesthetics. Sub-area three will be playing fields that can also serve to hold storm water overflow during large storm events. Most of the year this sub-area will be free of water.

A 6-foot tree-lined sidewalk will surround each park. The sidewalk will be wide enough to accommodate an assortment of users – mothers pushing strollers, children riding bikes and skateboards and joggers.

PHASING

To insure that the planning area is not built out too fast, the Specific Plan recommends a phase line, termed a 10-year annexation line. This line could run north/south or east/west depending on development and environmental constraints, community input and market forces.
INTRODUCTION

Development in the Southwest Exeter Specific Plan planning area will require the installation of a wide array of infrastructure improvements. These improvements will be designed, installed and maintained by the private sector, public entities, utility companies, and private companies involved in CATV, communications, and energy.

STORM DRAINAGE

The City of Exeter is responsible for planning, designing and managing storm water drainage in the planning area. The City also coordinates its management of storm water drainage with Consolidated Peoples Ditch, the operator of Locust-Grove Ditch. Consolidated Peoples Ditch does not permit direct discharge into Locust-Grove Ditch, however, it has permitted indirect discharge. As an example, Park Place Subdivision, located at the northeast corner of Glaze Avenue and Belmont Road, contains a park/pond basin. Storm water is first collected in this basin during a storm event. When the storm has passed, storm water is pumped from the basin into Locust-Grove Ditch. This management approach insures that water entering the ditch has fewer contaminants than if allowed to flow directly into the ditch. The detention of storm water in the basin insures that the flow capacity of the ditch is not exceeded, potentially causing downstream flooding.

The City of Exeter intends to utilize a Low Impact Development (LID) approach in its management of storm water in the planning area. This approach is designed to maximize on-site retention and infiltration prior to channeling runoff into the planning area’s system of gutters, drop inlets and pipes. Runoff
EIGHT: INFRASTRUCTURE

entering the planning area’s pipe system will be channeled to one of four parks in the planning area. These parks will contain a detention basin that will hold the storm water until a storm has passed. When the storm has passed, the water in the basin will be discharged to the Locust-Grove Ditch.

Unger Park, located on the northeast corner of Belmont Road and Glaze Avenue in Exeter, serves as a park and a storm water detention basin.

To insure the storm water that is discharged into Locust-Grove Ditch is relatively free of contaminants, the City may want to consider installing a fountain in each basin to assist in the aeration of the water.

WATER
The City of Exeter provides domestic water through a system of wells, pumps and distribution lines. All of Exeter’s water comes from an underlying aquifer. Exeter’s wells have been pumping from groundwater depths ranging from 400 to 600 feet; the standing water table in Exeter ranges from 60 to 80 feet.

Water will be distributed to the planning area through a network of eight, ten and twelve inch water lines. These lines will be connected to four proposed wells, which will be located throughout the planning area. Prior to installation of these domestic wells, test wells will be drilled to determine the optimum depth for water yield and quality. In the past, Exeter has experienced contamination of wells with dibromochloropropane (DBCP), a chemical that was used to treat nematodes in the soil in the 50s and 60s. Avoiding this contaminant, or a strata of water that is low yielding, is the purpose of drilling test wells.

The planning area’s water distribution system will be looped. This design feature will insure that adequate water pressure is available throughout the planning area. This is especially critical in regards to water pressure at the fire hydrants, which will be installed throughout the planning area. Sufficient water pressure at a fire hydrant is critical when a fire department is fighting a fire.

SEWER

The City of Exeter owns, operates and maintains its own wastewater treatment plant and collection system. Currently, the city’s system serves developed areas within the city limits, as well as some development on the
EIGHT: INFRASTRUCTURE

fringe of the city.

Wastewater will be collected from the planning area through a network of eight inch sewer lines. These lines will be connected to existing 18-inch and 36-inch sewer truck lines, located in Belmont Road. These lines run south and west to Exeter’s wastewater treatment facility. The sewer plan for the area also will include a future 12-inch collector line that will be installed in Elberta and will run south directly into the treatment plant. In 2000, Exeter upgraded its treatment plant to increase its capacity from 1.07 to 2.14 million gallons per day (mgd). The planning area’s sewer line system has been designed to avoid the use of lift stations, which are costly to install and maintain.

ENERGY

E

electrical energy will be supplied by Southern California Edison and natural gas by The Gas Company. These lines will be installed underground for safety and aesthetic reasons. The developer will be responsible for extending and/or installing these services in a development.

COMMUNICATIONS

V

erizon will supply phone service to development in the planning area; CATV will be provided by Cox Communications. These phone lines will be installed underground for safety and aesthetic reasons. The developer will be responsible for extending and/or installing these services in a development.
NINE: IMPLEMENTATION

INTRODUCTION

Implementation of the Southwest Exeter Specific Plan will involve a series of planning requests, most of which, can be processed concurrently. A typical planning application would involve the following: 1) annexation, 2) a conditional use permit for a planned unit development, 3) a zone change, 4) a subdivision map (tentative and final), and 5) an environmental document. Adoption of the Specific Plan will amend the Land Use Element of the Exeter General Plan thereby relieving the applicant from having to process a general plan amendment. In addition, the City has approved a Supplemental EIR for the Specific Plan. This environmental document is a supplement to the environmental impact report (EIR) prepared for the Exeter General Plan. It expands on the EIR’s discussion of environmental impacts as they pertain to the development of the planning area. Approval of this Supplemental EIR will free developers of having to prepare their own EIR. In most cases, only a negative declaration will be required of a development.

ZONING AND PLANNED UNIT DEVELOPMENTS

Once the Southwest Exeter Specific Plan is adopted, development of the planning area will require annexation of property into Exeter as well as the application of a land use designation and zoning classification. These designations and classifications must be consistent with the Specific Plan. All development in the planning area will be processed as a planned unit development, the regulations of which are detailed in Chapter 17.52 of Exeter’s Zoning Ordinance. According to the zoning ordinance, a planned unit development is required to be processed as a conditional use permit. The purpose and intent of a planned unit development is to:
“... achieve a more functional, aesthetically pleasing and harmonious living and working environment within the city which otherwise might not be possible by strict adherence.”

CONSISTENCY

Land use development in the planning area will be guided by the regulations of the zone districts that are applied to the planning area and the design guidelines and development standards that are detailed in Chapter Ten. To insure that the proposed development is consistent with the Specific Plan, the project will be evaluated using the Southwest Exeter Specific Plan Evaluation Form. This form will measure the project’s consistency with the Specific Plan’s goals, objectives, policies and actions outlined in Chapter Five and its design guidelines and development standards detailed in Chapter Ten. This evaluation process will be an integral part of the staff report prepared on a development project. It will afford the Planning Commission and City Council a means of measuring the project’s consistency with the Specific Plan.

PROCESSING

Processing a project in the planning area will generally require public hearings before the Exeter Planning Commission and City Council. Persons living in the immediate area will be notified of the development project as well as interested agencies, organizations and districts. In the case of annexations, a public hearing will also be held before the Tulare County Local Agency Formation Commission (LAFCO).
NINE: IMPLEMENTATION

Processing of a development application will begin with the payment of planning fees and the submittal of a development package, which will include planning applications, property maps and legal descriptions, subdivision maps, elevation drawings, landscaping and irrigation plans, and infrastructure plans.

Prior to scheduling a development project for Exeter’s design review committee, planning staff will review the development package using the Southwest Exeter Specific Plan Evaluation Form to determine if the project is consistent with the Specific Plan. If the project is consistent with the Specific Plan, it will be scheduled for the design review committee and eventually the planning commission and city council. Conditions of approval, which will be attached to the conditional use permit and the subdivision map, will be fashioned by the design review committee and can be modified by the planning commission and city council during their public hearings on the project.

PREPARATION OF PLANS

In order to insure that plans prepared for developments within the planning area are of the highest quality and accuracy, only registered professionals will be permitted to submit plans – engineering plans and specifications, registered civil engineer; landscaping plans, certified landscape architect; and building plans, registered architect.

FINANCING

The developer of a project will be required to pay a series of development impact fees as well as planning fees that pay for the processing of the development package. Development impact fees will collected for a number of
public improvements, including sewer, water, storm drainage, parks, signal lights, public buildings, bikepaths, medians/roundabouts and railroad crossings.

State planning law allows cities to collect a specific plan fee as reimbursement for their preparation of a specific plan and its long-term implementation. The Specific Plan recommends that this fee be established and that it be assessed on all private development in the planning area.

MAINTENANCE

Maintenance of the planning area will fall into four distinct categories - private property maintenance of privately owned property, private property maintenance of public right-of-way, public right-of-way maintained by a landscaping and lighting district, and public right-of-way and public property maintained by a public agency - City of Exeter, Exeter School District and the County of Tulare.

Category 1 - Private parties who own residential dwellings, apartments, offices and shopping centers will maintain the grounds and buildings on property they own.

Category 2 - Private parties who own residential dwellings, apartments, offices and shopping centers may maintain property that is in the public right-of-way.

Category 3 - The City of Exeter has formed landscaping and lighting districts to maintain improvements in the public right-of-way, including parkways, medians, walls, landscaping and irrigation, and lighting. The use of landscaping and lighting districts as a means of maintaining improvements in public rights-of-way will be used frequently throughout the planning area. The formation of these districts will often times be a condition of approval of projects proposed
for the planning area.

Category 4 - Public entities owning property in the planning area will be responsible for maintaining their own buildings and grounds. These facilities will include schools, parks, well sites, streets, curbs and gutters, storm drainage basins, sewer and storm drainage lines, and street signs.

AMENDMENTS

From time to time, the Southwest Exeter Specific Plan may be amended. Minor amendments to the document that do not change the meaning or intent of the Specific Plan, including modifications to the text, illustrations, or maps, can be completed by staff. Major amendments to the Specific Plan involving land use or circulation designations; goals, objectives and policies; or design guidelines and development standards shall be accomplished at public hearings before the Planning Commission and City Council.
Ten: design guidelines and development standards

10: INTRODUCTION

The design guidelines and development standards for the Southwest Exeter Specific Plan are intended to insure that the physical development of the planning area is designed and built in a manner that provides visual continuity and interest; promotes the public’s health, safety and welfare; and implements the planning goals, objectives and policies cited in the Specific Plan.

purpose

The guidelines and standards have been created for the benefit of designers, architects or developers as a set of instructions and examples for the construction and installation of improvements in the planning area. These standards and guidelines are not absolute, but are intended to implement the design principals outlined in the Specific Plan. A significant deviation from these requirements could create a development product that could fall below the expectations of the community. These guidelines and standards will be used by Exeter’s design review committee, planning commission and city council to evaluate the project’s consistency with the goals, objectives, policies and actions contained in the Specific Plan. A project that is consistent with the guidelines and standards of the Specific Plan is more likely to receive approval than one that deviates significantly from these standards.

Development standards will generally refer to the dimensions, type, or location of an improvement.
while the design guidelines will delineate a general design concept or objective that should be achieved through the design of a project.

DESIGN GOALS, objectives and policies OF THE SOUTHWEST EXETER SPECIFIC PLAN

The Southwest Exeter Specific Plan is a design oriented planning document. Exeter believes that numerous planning problems can be resolved through good design. In fact, the goal of the Southwest Exeter Specific Plan is to:

"Through design and policy create an integrated neighborhood of housing, parks, schools, offices and shopping centers that is pedestrian-oriented, visually uplifting, conservation-minded, effectively served with infrastructure and public services and is respectful of Exeter’s past and present values."

The design objectives of the Specific Plan are to:

6. Create opportunities for new, well-designed commercial and residential development, and
7. Guide development within the planning area in a manner that is consistent with Exeter's community values and historical past.

Supporting Policies

Policy 9. Development in the planning area should reflect an architectural theme or style, using common building materials or design elements that relate to Exeter's historical past, thereby creating a "sense of place."

Policy 15. The planning area should be well-lighted, colorful, interesting and cool during the summer, and it should be built with local building materials (granite, brick, native rock) and where possible, incorporate water features.

Policy 16. Streets in the planning area should effectively connect one neighborhood to another and to the community at-large. They should also be visually-pleasing; they should provide for bike and pedestrian traffic; and they should be designed so that they are safe and form a grid pattern to improve connectivity.

Policy 21. Building and non-building improvements designed for and constructed within the planning area should incorporate the design principles that form the foundation of the Southwest Exeter Specific Plan, including connectivity, conservation, context and good urban design.
Ten: design guidelines and development standards

The policies of the Southwest Exeter Specific Plan that implement the above-mentioned goal and objectives, and support the guidelines and standards detailed this chapter are listed to the right.

design guidelines and development standards

Design guidelines and development standards will be applicable to all building and non-building improvements constructed in the planning area. They should frame the design approach used on all development.

Building improvements will encompass those physical features in the planning area that are located on private property including buildings and their site improvements. These structures will generally fall into five categories: single family residential, multi-family residential, commercial and office, schools and parks.

Non-building improvements will encompass those physical features in a neighborhood that are within the public rights-of-way. These types of improvements are visible to persons traveling past or through the planning area. They are typically a persons first visual encounter with the planning area - a street tree, an entryway feature, a street light or a wall that lines a street. These types of improvements will not include sewer, water or storm

Ten: design guidelines and development standards

Drainage lines, utility lines or telephone lines given that they are generally placed underground.

The appearance of these two types of improvements can leave the visitor or resident with a positive image of the planning area, or one that is unmemorable or negative. It is the objective of this Specific Plan to create a lasting visual image for persons living in or traveling through the planning area.

Chapter organization

The design guidelines and development standards are divided into three sections - 1) general site design; 2) building and site improvements and 3) non-building improvements, like roadways, sidewalks, medians, roundabouts, bulbouts, street crosswalks, trails and entryway features.

The guidelines and standards will provide narrative and illustrations that will assist developers with the design and construction of improvements in the planning area. These guidelines should be given due consideration by developers in that they are intended to implement the design principals detailed in the Specific Plan. These directives can not cover every potential development situation in the planning area, however, they should provide enough guidance for a developer or public entity building a project in the planning area.
I. General Site Design

A. Each development should consider the characteristics of the site and its surroundings prior to developing a site plan. For example, the project should take advantage of views - Sierras, farmland and/or the Locust-Grove Trail - offered by the site. Conversely, the proposed project should not pose impacts like noise or traffic on neighboring land uses.

B. Two or more points of vehicular ingress/egress should be provided for each development project so as to promote "connectivity" with surrounding properties. Further, the project should be linked with the planning area's larger pedestrian system, which could involve installation of sidewalks, bikepaths, trails, or pedestrian access points.

C. The development project should be oriented so that it has an "on-street presence". In other words, from the street, persons should be able to discern the front of the building. This treatment can be achieved through architectural design, landscaping, entryway improvements or other types of design features.
D. Development should be designed to conserve resources. Design measures that should be employed by the developer include proper orientation of buildings and installation of deciduous trees to promote passive solar objectives; planting of xerophytic plants to encourage water conservation; implementation of grading and drainage designs that reduce storm water runoff; incorporation of public transit improvements that will promote the use of public transportation and less reliance of private vehicles; and integration of solid waste recycling measures that foster recycling and reuse.

6. Exeter is proud of its history and appearance. Context should be an important principle in the developer's design of a project. The use of "off the shelf" or "corporate franchise" plans should be discouraged.

F. The internal traffic circulation of a project should be designed to avoid awkward turning or parking maneuvers, traffic stacking on travelways entering or exiting the site, and difficult driving patterns for delivery trucks and solid waste vehicles.

G. The choice of landscaping material that surrounds a development should be compatible with the use of the building and its architecture and climate appropriate.
II. Buildings and SITE improvements

A. General Building Design, Excluding Single Family Residential

1. All buildings and their associated improvements, like fences, walls, trash enclosures, bus arbors, lights, etc. should exhibit a cohesive architectural style.

2. All walls of buildings that face a public street should be provided with architectural articulation. This articulation will insure that the view from the public right-of-way will not be “bland or boring” but as attractive as the front of the building. Articulation can involve window and door openings, ornamentation, cornice, bulkhead and parapet treatments, awnings, etc.

3. Exterior treatment of buildings should consider materials that have been historically used in Exeter - native rock or brick.

B. Single Family Residential

Walls that face a public street should be provided with architectural articulation – the use of insets, windows, cornices and parapet treatments can all combine to make for an interesting and lively urban environment.

Cottage Homes Architectural Style
1. Cottage Homes

a. Cottage homes shall be generally defined as homes that are built on lots that are between 5,000 and 6,000 square feet in size. This small lot feature will make this type of home more affordable.

b. Cottage home development can employ unique design strategies, including zero-lot-line, rear-loaded, or wide-shallow lot design.

c. Cottage home development shall incorporate an architectural theme that is indigenous to Exeter. This design treatment will visually enhance the appearance of the home.

d. Cottage homes shall incorporate front porches that have a minimum depth of six feet and a minimum length of ten feet. This design standard will encourage residents to use this feature of their home.

e. All garages shall be constructed a minimum of ten feet behind the front face of a cottage home in order to "show case" the architectural style of the home. The front yard setback on these homes should be staggered to create an interesting streetscape.

Architectural styles shall be reflective of Exeter’s history. Styles such as Craftsman, Spanish and Tudor are preferred. See Appendix "A" for additional information.
f. All front yard fences and corresponding gates shall be architecturally consistent with the design of the cottage home. This design feature will visually enhance the appearance of the home.

g. Seventy-five percent of all garages shall be located on the west side of a home that fronts onto an east/west roadway, and on the north side of a home that fronts onto a north/south roadway. This locational feature will conserve energy.

h. All ground-mounted heating/cooling units shall be located on the east side of a home that fronts onto an east/west roadway, and on the north side of a home that fronts onto a north/south roadway. This locational feature will conserve energy.

i. Not more than fifty percent of the front yard landscaping shall be devoted to turf. Shrubs planted in the front yard shall be drought-tolerant species. These design features will conserve water.

j. All parkways shall be seven feet wide, shall be depressed and shall be provided with a drip irrigation line that runs from the adjoining...
TEN: design guidelines and development standards

home to the parkway. Parkways will be planted with a deciduous street tree found on the Southwest Exeter Specific Plan Street Tree List. The parkway will be covered with mulch; turf will not be permitted. This design feature will conserve water and reduce storm water runoff.

k. Residents are encouraged to plant deciduous trees on the south and west sides of their home. This locational design feature will conserve energy.

l. All homes shall be equipped with two rain barrels that are connected to the homes gutter system. These features will conserve water and reduce the volume of storm water runoff.

Shade Trees

Shade trees should be planted on south and western exposures. This helps to promote cooling during hot summer months.
2. Traditional Neighborhood Homes

a. Traditional neighborhood homes shall be generally defined as homes that are built on lots that range from 6,000 to 10,000 square feet in size.

b. Traditional neighborhood home development shall incorporate an architectural theme that is indigenous to Exeter. This design feature will visually enhance the appearance of the home.

c. Traditional neighborhood homes shall incorporate front porches that have a minimum depth of six feet and a minimum length of ten feet. This will encourage the residents to use this feature of their home.

d. All garages shall be constructed a minimum of ten feet behind the front face of a traditional neighborhood home in order to "show case" the architectural style of the home. The front yard setback on these homes should be
Ten: design guidelines and development standards

staggered to create an interesting streetscape.

e. All front yard fences and corresponding gates shall be architecturally consistent with the design of the traditional neighborhood home. This design feature will visually enhance the appearance of the home.

f. Seventy-five percent of all garages shall be located on the west side of a home that fronts onto an east/west roadway, and on the north side of a home that fronts onto a north/south roadway. This locational feature will conserve energy.

g. All ground-mounted heating/cooling units shall be located on the east side of a home that fronts onto an east/west roadway, and on the north side of a home that fronts onto a north/south roadway. This locational feature will conserve energy.

h. Not more than fifty percent of the front yard landscaping shall be devoted to turf. Shrubs planted in the front yard shall be drought-tolerant species. These design features will conserve water.

Architectural styles shall be reflective of Exeter's history. Styles such as Craftsman, Spanish and Tudor are preferred.

Not more than fifty percent of the front yard landscaping shall be devoted to turf.
i. All parkways shall be seven feet wide, shall be depressed and shall be provided with a drip irrigation line that runs from the adjoining home to the parkway. Parkways will be planted with a deciduous street tree found on the Southwest Exeter Specific Plan Street Tree List. The parkway will be covered with mulch; turf will not be permitted. This design feature will conserve water and reduce storm water runoff.

j. Residents are encouraged to plant deciduous trees on the south and west sides of their home. This locational design feature will conserve energy.

k. All homes shall be equipped with two rain barrels that are connected to the homes gutter system. These features will conserve water and reduce the volume of storm water runoff.

3. Estate Homes

a. Estate homes shall be generally defined as homes that reside on lots that exceed 10,000 square feet in size.

b. All garages shall be constructed a minimum of ten feet behind the front face of an estate home in order to “show case” the design of
Ten: design guidelines and development standards

The front yard setback on these homes should be staggered to create an interesting streetscape.

c. All front yard fences and corresponding gates shall be architecturally consistent with the design of the home. This design feature will visually enhance the appearance of the home.

d. Seventy-five percent of all garages shall be located on the west side of a home that fronts onto an east/west roadway, and on the north side of a home that fronts onto a north/south roadway. This locational feature will conserve energy.

e. All ground-mounted heating/cooling units should be located on the east side of a dwelling that fronts onto an east/west roadway, and on the north side of a home that fronts onto a north/south roadway. This locational feature will conserve energy.

f. Not more than fifty percent of the front yard landscaping shall be devoted to turf. Shrubs planted in the front yard shall be drought-tolerant species. These design features will conserve water.

Traditional Homes
Architectural Style
Parkways
Ten: design guidelines and development standards

g. All parkways shall be seven feet wide, shall be depressed and shall be provided with a drip irrigation line that runs from the adjoining home to the parkway. Parkways will be planted with a deciduous street tree found on the Southwest Exeter Specific Plan Street Tree List. The parkway will be covered with mulch; turf will not be permitted. This design feature will conserve water and reduce storm water runoff.

h. Residents are encouraged to plant deciduous trees on the south and west sides of their home. This locational design feature will conserve energy.

i. All homes shall be equipped with two rain barrels that are connected to the homes gutter system. These features will conserve water and reduce the volume of storm water runoff.

C. Multi-Family Residential

1. Duplex, Tri-Plex and Four-Plex Units

a. Duplex, tri-plex and four-plex units shall occupy lots that provide a minimum area of 3,000 square feet of lot area per dwelling unit.

Duplex, tri-plex and four-plex development can employ unique design strategies, including zero-lot-line, rear-loaded, or wide-shallow lot designs.
b. Duplex, tri-plex and four-plex development can employ unique design strategies, including zero-lot-line, rear-loaded, or wide-shallow lot designs.

c. Duplex, tri-plex and four-plex development shall incorporate an architectural theme that is indigenous to Exeter. This design feature will visually enhance the appearance of the dwelling unit.

d. Duplex, tri-plex and four-plex development shall incorporate front porches that have a minimum depth of five feet and a minimum length of eight feet. This design feature will encourage the residents to use their porch.

e. All garages or carports shall be constructed ten feet behind the front face of a duplex, tri-plex and four-plex unit in order to "show case" the architectural style of the dwelling unit.

f. All front yard fences and corresponding gates shall be architecturally consistent with the design of the dwelling unit. This design feature will visually enhance the appearance of the dwelling unit.

g. All garages or carports shall be located on the west side of a dwelling unit that fronts onto an
TEN: design guidelines and development standards

east/west roadway, and on the north side of the dwelling that fronts onto a north/south roadway. This locational feature will conserve energy.

h. All ground-mounted heating/cooling units shall be located on the east side of a dwelling unit that fronts onto an east/west roadway, and on the north side of a dwelling that fronts onto a north/south roadway. This locational feature will conserve energy.

i. Not more than fifty percent of the front yard landscaping shall be devoted to turf. Shrubs planted in the front yard shall be drought-tolerant species. These design features will conserve water.

j. All parkways shall be seven feet wide, shall be depressed and shall be provided with a drip irrigation line that runs from the adjoining home to the parkway. Parkways will be planted with a deciduous street tree found on the Southwest Exeter Specific Plan Street Tree List. The parkway will be covered with mulch; turf will not be permitted. This design feature will conserve water and reduce storm water runoff.
k. Landlords are encouraged to plant deciduous trees on the south and west sides of the dwelling. This locational design feature will conserve energy.

l. All dwelling units shall be equipped with rain barrels that are connected to the dwellings gutter system. These features will conserve water and reduce the volume of storm water runoff.

2. Apartments/Condominiums

a. Apartment/condominium development should utilize architectural styles that are native and traditional to Exeter. These styles are detailed in the Single Family Residential design guidelines.

b. Regardless of size or number of units, apartment/condominium projects should be designed to integrate into the surrounding neighborhood.

c. Dwelling units should be "pulled forward" on the lot, towards the street, with parking to the rear. This helps apartment / condominium projects better harmonize with the existing streetscape and surrounding neighborhood.
d. Dwelling units fronting the street should include a front door facing the street.

![Diagram showing varied roof line and front doors facing street]

e. Dwelling units with doors facing streets should include a front porch with a minimum of six feet of depth and a minimum of eight feet of width.

f. All apartments/condominium development should incorporate the following elements:

1. Varied front setbacks within the same structure with staggered unit plans.

2. Varied roof lines (especially where the building exceeds 20 feet in height). Roof lines of large buildings should be varied to reduce apparent scale and mass. Use of overhanging eves, parapet
Ten: design guidelines and development standards

Wall details and three dimensional cornice treatments can enhance character of the roof line area.

3. Use reverse building plans to add variety.

4. A maximum of two adjacent units with identical exterior colors.

5. Exterior walls on single story dwelling units that face a street should contain a base treatment and a wall of a contrasting material; exterior walls of a two-story dwelling shall be constructed of two different building materials and/or painted with two different colors.

f. Stairways should be designed as an integral part of the overall structure and should incorporate materials used in the main building. Exposed "Motel-style" prefabricated stairways composed of concrete and open wrought-iron railing is discouraged. Common stairways should be designed to serve a limited number of units.

Stairways should be designed as an integral part of the overall structure.
Ten: Design guidelines and development standards

g. Accessory structures such as club houses, equipment buildings, and trash enclosures should be architecturally treated to be consistent with main buildings.

h. Large roof mounted equipment is prohibited except in select in-fill type projects where space is critical. Where necessitated such equipment should be screened from view through the use of parapets or screening that complement the architectural character of the building.

i. Exterior lighting should be designed to complement the overall architectural character of the site and should be shielded from neighboring properties. Utilitarian light fixtures are discouraged.

j. Apartment/condominium developments should be well landscaped, ideally incorporating an appropriate combination of turf, shrubs and shade trees. Not more than fifty percent of the landscaped area should be composed of turf; xerophytic shrubs should be utilized as well as tree species where possible.

k. Utilize landscaping to enhance a sense of security and maintain street visibility of doors and...
Ten: design guidelines and development standards

windows and visibility from within the development.

1. Consider planting native varieties of spiny or thorny plants below ground-floor windows to discourage unwanted access.

m. Apartment/condominium developments shall be equipped with rain barrels that are connected to the complex’s gutter system. This feature will conserve water and reduce the volume of storm water runoff.

D. Commercial and Office Buildings

1. These types of development should avoid “box-like” designs. All walls that face a public right-of-way should be attractive and interesting. The design of these developments should emphasize the building’s appearance and de-emphasize the visibility of the parking lot. This can be achieved with landscaping, by locating the parking lot to the side or behind the building or by providing smaller multiple parking lots rather than one large parking lot.

2. These types of development should be pedestrian-oriented by:

 a. providing pedestrian and bike path improvements that connect to the planning area’s

 Preferred

 Variety in façade and roofline

 Discouraged
Ten: design guidelines and development standards

larger pedestrian system, and installing permanent bike racks.

b. providing pedestrian access points, allowing persons to travel from the subject property to adjacent properties.

c. providing a formal pedestrian pathway from the parking lot to the building complex.

3. These types of development should contain "focal point" features, such as a plaza, fountain, roundabout, tower, tree-lined entryway, or public art.

9. All freight loading/unloading zones, storage areas, and mechanical equipment should be screened from the public's view.

5. Building design should be concert with Exeter's historical past. While these guidelines and standards do not require an architectural theme for commercial and office buildings, there should be some type of identifiable architectural style that is reflected in the project.

6. These types of development should have signage that is mounted flush on each building. All freestanding signs shall be

SITE PLAN

This graphic illustrates a dynamic commercial shopping center design on a corner lot. The buildings are "pulled" forward on the lot with parking "pushed" to the rear. A pedestrian connection leads from the parking lot to the street corner, where a pedestrian plaza invites shoppers to spend time outdoors.
TEN: design guidelines and development standards

monument signs with a defined base.

E. Schools

1. All walls of a school that face a public right-of-way should be attractive and interesting. The design of these developments should emphasize the building’s appearance and de-emphasize the visibility of accessory structures, like parking lots, the cafeteria, offices and bus unloading zones.

2. Schools should be pedestrian-oriented by:

 a. providing pedestrian and bike path improvements that connect the school to the planning area’s larger pedestrian system, and installing permanent bike racks.

 b. providing pedestrian access points, allowing school-aged children to travel from the school to adjacent properties.

 c. incorporating safe-route-to-school improvements, including signage, well defined crosswalks, and off-street drop-off/pick-up zones.

3. Schools should contain a “focal point” feature - architectural ornamentation, specimen tree, statue, fountain, plaza, etc.
TEN: design guidelines and development standards

4. All accessory structures, storage areas, and mechanical equipment should be screened from the public's view.

5. School buildings should be designed to be in concert with Exeter's historical past. While these guidelines and standards do not require an architectural theme for school buildings, there should be some type of identifiable architectural style that is reflected in the school project.

Exeter High School has maintained the school’s early architectural style.

F. Parks

1. Parks should be centrally located and should be accessible and visible from adjacent neighborhoods.

2. Parks should have a dual use - open space and storm water detention. Detention basins should be aesthetically pleasing and should be integrated into the design of the park.

3. Parks should be designed to provide elevation grade changes in order to create a park that interesting and novel.

4. Parks should be designed to create visual images that involve colorful foliage; focal points using structures.

Parks should be centrally located within the area they serve and homes should be situated to face onto the park – for increased security and visibility.
Ten: design guidelines and development standards

trees or water features; and ample areas of shade.

5. Parks should be designed for the pedestrian by installing a pedestrian and bike pathway system around and through the park. All pedestrian pathways shall be lined with pedestrian lighting and bollards at the intersections.

6. Parks should contain "focal point" features, such as a pond, fountain, arbor, grove of trees, outdoor amphitheater or public art.

7. Parks should be designed to accommodate and attract persons of different ages - children to seniors.

8. Park structures should be designed to be concert with Exeter's historical past. While these guidelines and standards do not require an architectural theme, there should be some type of identifiable architectural style that is reflected in the park. The design of accessory structures such as trash enclosures, trash receptacles, benches, arbors, restrooms, fences and walls, shall have a common design theme.

9. Park landscaping should employ water conservation measures such as the use of native drought tolerant plant species, minimizing turf areas, the use of mulch to preserve soil moisture, and the installation of innovative irrigation
systems that reduce the consumption of irrigation water.

10. On-street parking around the park should be permitted and encouraged.
III. Non-Building Improvements

Improvement: Arterial Roadway (Visalia Road)

Purpose: Arterial roadways are designed to transport vehicular and pedestrian traffic from the planning area to neighboring cities and Exeter.

Roadway Characteristics: The arterial will provide for two travel lanes in each direction, a 12-foot landscaped median, two 5-foot sidewalks and two 5-foot parkways.

Policy: Streets in the planning area should effectively connect one neighborhood to another and to the community at-large. They should also be visually pleasing; they should provide for bike and pedestrian traffic; and they should be designed so that they are safe and form a grid pattern to improve connectivity.

Figure 11
TEN: design guidelines and development standards

Improvement: Collector roadways (north/south): Elberta, Belmont and two unnamed boulevards; east/west: Glaze, Powell, two unnamed avenues; Firebaugh, Chestnut, Maple, and Fairway).

Purpose: Collectors form the core of the planning area's grid street system. They run north/south and east/west. They permit vehicular and pedestrian traffic to move throughout the planning area as well as linking the planning area to Visalia Road, an arterial roadway.

Roadway Characteristics: Except for the two north/south collector boulevards, collectors will provide for one travel lane in each direction, two 7-foot tree-lined parkways, and two 5-foot sidewalks. The north/south collector boulevards will provide one travel lane in each direction with on-street parking, two 7-foot tree-lined parkways, two 5-foot sidewalks, and a 20-foot landscaped median. Class III bike lanes are permitted along all collectors.

Policy: Streets in the planning area should effectively connect one neighborhood to another and to the community at-large. They should also be visually pleasing; they should provide for bike and pedestrian traffic; and they should be designed so that they are safe and form a grid pattern to improve connectivity.

Collector Roadways

Collector Roadway (north/south boulevards)

Figure 12
Figure 13

Collector Roadway: Firebaugh Avenue

Figure 14
Collector Roadways: (Elberta, Glaze, Powell, Maple, Fairway, Chestnut

Improvement: Local roadways.

Purpose: Local roadways link the residential blocks of the planning area to the collector grid system. They permit vehicular and pedestrian traffic to move from one residential block to another. By design, they promote slower driving speeds and increased pedestrian usage.

Roadway Characteristics: Local streets will provide for one travel lane in each direction with on-street parking, two 7-foot tree-lined parkways and two 5-foot sidewalks.

Policy: Streets in the planning area should effectively connect one neighborhood to another and to the community at-large. They should also be visually pleasing; they should provide for bike and pedestrian traffic; and they should be designed so that they are safe and form a grid pattern to improve connectivity.

Local Roadways

Figure 15
Local Streets:

Improvement: Lanes.

Purpose: Lanes will provide for one travel lane in each direction. They are located at the rear of residential lots and are intended to provide rear access to garages in the backyards of residential lots.

Roadway Characteristics: Lanes are 20 feet wide and are paved. Garbage collection is not permitted from a lane.

Policy: Streets in the planning area should effectively connect one neighborhood to another and to the community at-large. They should also be visually pleasing; they should provide for bike and pedestrian traffic; and they should be designed so that they are safe and form a grid pattern to improve connectivity.
Figure 16

Improve: Sidewalks.

Purpose: Sidewalks will line both sides of roadways in the planning area. This improvement is designed to encourage walking while at the same time promoting a sense of “community” by locating the sidewalk in close proximity to front yard porches.

Sidewalk Characteristics: Sidewalks will range in width from 5 feet in residential neighborhoods to 6 feet around parks. Sidewalks will be tree-lined and will be set back from the adjacent street.

Policy: New development in the planning area shall be designed to be "pedestrian-friendly" - promoting walking, bicycling and social interaction with neighbors.
TEN: design guidelines and development standards

Improvement: Parkways and medians.

Purpose: Parkways and medians will serve dual purposes. They will be planted with street trees, which will add shade and color to the neighborhood, and they will be depressed so as to catch storm water runoff during periods of precipitation.

Parkway and Median Characteristics: Most parkways will be 7 feet wide and will be depressed. Only street trees will be planted in the parkways in an effort to conserve water. Medians will be 20 feet wide and will be depressed. They also will only be planted with street trees.
Design guidelines and development standards

Policy: Development shall be designed to promote energy conservation. Development shall be designed to promote water conservation. The City of Exeter shall employ a "low-impact development" (LID) approach to the management of stormwater runoff generated by the planning area.

Improvement: Locust Grove Trail.

Purpose: The Locust Grove Trail will permit persons living in the planning area to walk, run or bike from one destination to another without having to encounter with vehicular traffic. This trail will also serve as a "Safe Route to School" feature - allowing school-aged children to be able to walk or ride to school without having to share the route with vehicular traffic.

Trail Characteristics: The trail will be located within a 40-foot wide easement, controlled by Consolidated Peoples Ditch. This easement will contain a 8-foot wide asphalt pathway, xerophytic landscaping and pedestrian lighting. It will be slightly depressed to retain stormwater runoff.

Policy: New development in the planning area shall be designed to be "pedestrian-friendly" - promoting walking, bicycling and social interaction with neighbors. Development shall be designed in a manner that minimizes its impact on air quality. Development shall be designed to promote energy conservation.

Improvement: Roundabouts, Bulbouts and Raised Crosswalks

Traffic Calming Mechanisms

Figure 17

Typical cross section of the Locust Grove Trail.
Purpose: These improvements will slow vehicular traffic, provide safer street crossings for pedestrians, and will enhance safe and efficient traffic circulation.

Roundabouts and Bulbouts Characteristics:
Roundabouts contain a circular raised median that directs traffic in a counterclockwise direction through the intersection. Traffic is not required to stop but simply yields to merging traffic. Bulbouts narrow the street width at intersections by narrowing the distance between the curbs. This restriction reduces the distance a pedestrian must travel to cross a street. A raised crosswalk serves as a speed bump - slowing traffic and allowing pedestrians to cross a street on a walking surface that is level with the sidewalk.

Policy: New development in the planning area shall be designed to be “pedestrian-friendly” - promoting walking, bicycling and social interaction with neighbor.

Improvement: Entryway Features, Fences and Walls

Purpose: Gateway treatments are a visual introduction to a neighborhood that is composed of some type of physical design feature. All these treatments serve to add to the visual quality of a development - making an entryway statement. Fences and walls will be visible throughout the planning area. They will enclose yard areas and some residential neighborhoods.
TEN: design guidelines and development standards

Gateway Characteristics: Entryway features can include a stone wall, a row of trees, special signage, unique lighting or a water feature. Fences and walls should be attractive. Walls should be used sparingly but when constructed should incorporate pilasters, wall caps and shall contain local building materials.

Policy: New development (residential, commercial and public) shall be designed in a manner that creates neighborhoods that are safe, create a "sense of place" and are connected to the larger community.

Improvement: Lighting

Purpose: Street lights illuminate streets, sidewalks and trails. This illumination promotes safe neighborhoods and creates a nighttime environment that can be alluring.

Light Characteristics: Lights should be scaled for the pedestrian - 12 to 15 feet in height, they
TEN: design guidelines and development standards

should be color coated, they should incorporate energy saving features, they should be properly spaced and they should contain the correct wattage and shields from glare and upward spillage.

Policy: New development (residential, commercial and public) shall be designed in a manner that creates neighborhoods that are safe, create a “sense of place” and are connected to the larger community.

Improvement: Street Trees and Landscaping/Irrigation

Purpose: Street trees provide shade during the summer months and allow for passive solar heating during the winter months. They add intrinsic value to a neighborhood with their shading, color and softening effect. Other types of landscaping that will be planted in front yards, common areas, parks and throughout commercial developments shall be xerophytic to conserve water. Irrigation systems should be designed specifically for these types of landscaping treatments.

Street Tree Characteristics: Street trees should be deciduous - providing shade during the summer months and allowing for passive solar heating during the winter months; they should provide color and texture; they should use a minimal amount of water and they should not damage sidewalks or drop seeds, branches or leaves that pose a public nuisance.

Policy: Development shall be designed to promote energy conservation Development shall be designed to promote water conservation.

The model for streets in the planning area: tree-lined, shady and cool.

Parking Lots
Improvement: Parking Lots

Purpose: Parking lots provide parking stalls for various types of vehicles that are used by persons living, visiting or working at an adjacent land use.

Parking Lot Characteristics: Parking lots should be designed to provide convenient and accessible parking stalls for persons driving a variety of vehicles; they should be landscaped with appropriate trees that will shade 50 percent of the parking lot within five years and the perimeter of the lot should be framed with a combination of trees, shrubs and annuals; they should provide for a defined pedestrian walkway from the parking lot to the adjacent land use; they should provide bike racks; and where possible, common driveways for parking lots should be used when different land uses will utilize the same parking area.

Policy: Building and non-building improvements designed for and constructed within the planning area should incorporate the design principles that form the foundation of the Southwest Exeter Specific Plan, including connectivity, conservation, context and good urban design.
APPENDIX A: SPECIFIC PLAN EVALUATION FORM

SOUTHWEST EXETER SPECIFIC PLAN APPLICAtion form

APPLICANT: ______________________
ARCHITECT: ______________________
ENGINEER: _______________________
LANDSCAPE ARCHITECT: ______________
PROJECT LOCATION: __________________
PROJECT SIZE: ____________________
SPECIFIC PLAN DESIGNATION: ____________

SPECIFIC PLAN CHECK LIST
A - 1
APPENDIX A: SPECIFIC PLAN EVALUATION FORM

1. SECURE COPY OF SOUTHWEST EXETER SPECIFIC PLAN

2. READ SPECIFIC PLAN

3. READ SPECIFIC PLAN AGAIN

4. FORM DESIGN TEAM COMPOSED OF APPLICANT-ARCHITECT-CIVIL ENGINEER-LANDSCAPE ARCHITECT

5. MEET WITH CITY STAFF TO DISCUSS PROJECT DETAILS, INCLUDING DESIGN CONCEPTS, INFRASTRUCTURE, CIRCULATION, ARCHITECTURAL STYLES, DEVELOPMENT STANDARDS AND PROCESSING PROCEDURES.

6. PREPARE PRELIMINARY PLANS FOR SUBMITTAL TO CITY DESIGN REVIEW COMMITTEE.

7. CHECK PRELIMINARY PLAN FOR CONSISTENCY WITH THE FOLLOWING POLICIES AND ACTION PROGRAMS.

Policy 1. New development shall be designed in a manner that creates neighborhoods that are safe, create a “sense of place” and are connected to the larger community.

Actions

a. The Specific Plan’s land use and circulation maps will be designed so
APPENDIX A: SPECIFIC PLAN EVALUATION FORM

that all land uses will be interconnected with streets, sidewalks and pathways.

b. Design guidelines and development standards will be prepared for buildings and improvements that will be constructed in the planning area.

Policy 2. New development in the planning area shall be designed to be "pedestrian-friendly" - promoting walking, bicycling and social interaction with neighbors.

Actions

a. The Specific Plan’s land use and circulation maps will be designed so that all land uses will be interconnected with streets, sidewalks and pathways.

b. Design guidelines and development standards will be prepared for pedestrian improvements that will be constructed in the planning area.

Policy 3. Development shall be designed and executed in a manner that efficiently utilizes land within the planning area to reduce urban sprawl and minimize its impact on surrounding agriculture.

Actions

a. The land use plan will provide for an overall residential density of five dwelling units per acre. The land use plan will provide for a variety of residential densities, ranging from two units to 29 units per acre.

b. The land use plan shall phase residential development in the planning area, using Exeter’s 10-year annexation line as the demarcation between short- and long-term residential development.

c. The land use plan will provide locations for high density residential development within the planning area.

Policy 4. Development shall be designed in a manner that minimizes its impact on air quality.
Actions

a. The circulation plan will be designed so that vehicular and pedestrian connectivity is maximized.

b. The circulation plan will delineate a bikepath that will follow the Locust-Grove Ditch alignment.

c. Transit shelters will be located throughout the planning area.

d. The land use plan will locate high destination uses, like parks and schools, in central locations. It will also locate high density residential development near commercial uses.

e. The circulation plan will employ a grid street pattern. Existing city streets east of Belmont Avenue, including Maple, Chestnut, Firebaugh, Powell, and Glaze Avenues, will be extended west to the Elberta alignment. The two proposed north/south boulevards and Elberta Street will be extended south from Visalia Road to connect with Glaze Avenue.

f. The land use plan will delineate four park sites in the planning area, equally spaced from each other.

g. The land use plan will provide for a school site that is centrally located in the planning area.

Policy 5. Development shall be designed to promote energy conservation.

Actions

a. The circulation plan will be dominated by east/west roadway alignments, which provides for passive solar strategies. Eighty percent of the roadways in the planning area will be oriented east and west.

b. Design guidelines and development standards will be prepared that
Policy 6. Public open space shall be an integral feature in the planning area. Open space should be accessible, visually-pleasing and safe.

Actions

a. The land use plan should delineate park sites within the planning area that are accessible to all residents of the planning area.

b. Design guidelines and development standards will be prepared for parks and open space uses.

Policy 7. Development shall be designed to promote water conservation.

Actions

a. Residential development shall be required to incorporate rail barrels into the design of residential developments.

b. Landscaping throughout the planning area shall incorporate water conservation design measures.
APPENDIX A: SPECIFIC PLAN EVALUATION FORM

c. The use of turf in the planning area shall be limited, especially in residential front yards, parkways and medians.

d. The incorporation of xerophytic plant material shall be encouraged throughout the planning area.

Policy 8. Development in the planning area shall connect to and support the greater Exeter community.

Actions

a. The Specific Plan’s land use and circulation maps will be designed so that all land uses will be interconnected with streets, sidewalks and pathways. In addition, connection to the downtown and the greater Exeter area will be maximized by extending streets from adjacent neighborhoods through the planning area.

Policy 9. Development in the planning area should reflect an architectural theme or style, using common building materials or design elements that relate to Exeter’s historical past, thereby creating a “sense of place.”

Actions

a. Design guidelines and development standards will be prepared for residential and commercial development that will be constructed in the planning area.

b. The construction of production housing will be encouraged to use an architectural theme.

Policy 10. The planning area should provide for a mixture of housing by type, size, affordability and accessibility.

Actions

a. The land use plan will provide for a range of housing types, including
apartments, cottage homes, and traditional neighborhood homes.

b. The land use plan will provide for residential densities that support housing that is affordable.

c. Unique residential design strategies (e.g. zero-lot line and alley-loaded homes) will be employed throughout the planning area to promote affordable housing.

Policy 11. Recycling, reuse and composting should be promote in order to reduce the volume of solid waste generated by the planning area.

Actions

a. Developers may encourage composting by incorporating compost bins in development.

b. Green waste generated by the planning area will be reduced by discouraging the use of turf as a landscaping treatment.

Policy 12. The City of Exeter shall employ a “low-impact development” (LID) approach to the management of storm water runoff generated by the planning area.

Actions

a. All parks in the planning area will serve a dual purpose - park and storm water detention basin.

b. Parkways, medians and trails will be depressed to serve as catch basins for storm water runoff.

c. Streets will have reduced widths. This design feature will reduce storm water runoff generated by street surfaces.

d. Rain barrels will be incorporated into all residential projects.
Policy 13. The development of the planning area should not pose a long-term fiscal burden for the City of Exeter.

Actions

a. All development in the planning area shall pay development impact fees.

b. All residential development shall form a landscaping and lighting district to pay for the maintenance of common areas and lights.

Policy 14. Schools in the planning area should be centrally located and designed so that they are easily assessable by vehicles, school buses and school-aged children walking or riding their bikes to school.

Actions

a. Access to schools should be provided by two or more roadways, a network of adjacent sidewalks and the Locust-Grove Trail.

b. Drop-off zones should be incorporated into the design of the school.

c. Roadways adjacent to schools should be provided with school signage, crosswalk signage, and proper lighting to insure safe passage of students traveling to and from school.

Policy 15. The planning area should be well-lighted, colorful, interesting and cool during the summer, and it should be built with local building materials (granite, brick, native rock) and where possible, incorporate water features.

Actions

a. Design guidelines and development standards will be prepared for
residential and commercial development.

b. All development design shall be prepared by a licensed architect, landscape architect or engineer.

c. To determine compliance with the design strategies of the Specific Plan, the Planning Commission will evaluate each development using the Specific Plan Evaluation Form.

Policy 16. Streets in the planning area should effectively connect one neighborhood to another and to the community at-large. They should also be visually-pleasing; they should provide for bike and pedestrian traffic; and they should be designed so that they are safe and form a grid pattern to improve connectivity.

Actions

a. All streets shall be planted with street trees of different species.

b. Through streets shall be encouraged in all developments.

c. Cul-de-sac streets shall be designed to “kiss” adjacent streets or the Locust-Grove Trail.

d. Development shall be linked to adjacent development by streets, sidewalks, trails and pedestrian pathways.

Policy 17. Infrastructure that serves the planning area should be master planned to insure that the entire area can be effectively served and that the development impact fees charged to developers are adequate to finance the installation of the improvements detailed in the master plans.

Actions

a. An amendment to Exeter’s sewer master plan shall be prepared by the city engineer for the planning area.

b. An amendment to Exeter’s water master plan shall be prepared by
the city engineer for the planning area.
c. An amendment to Exeter’s storm drainage master plan shall be prepared by the city engineer for the planning area.

Policy 18. Commercial development within the planning area should be phased, and provide for uses that are not commonly found in Downtown Exeter.

Action

a. The land use plan shall show the westerly half of Visalia Road frontage as “commercial reserve”. This 17 acres will remain in reserve until such time as the easterly half of the commercial property along Visalia Road has been built out.

Policy 19. Commercial development along Visalia Road should be linked to the larger planning area, it should have distinguishing design features and it should enhance Exeter’s sales tax revenue.

Actions

a. Each commercial development shall present a cohesive architectural design.

b. Commercial development shall be linked to adjacent development by roadways, trails, sidewalks and/or pedestrian pathways.

c. Commercial development shall incorporate a unique design feature that brings attention to the project.

Policy 20. The planning area should be designed so that public services, like police, fire and solid waste, can be properly and efficiently delivered to clients within the area.

Actions

a. The circulation map will be configured so that all land uses will be interconnected with streets, sidewalks and pathways.
b. The circulation design for residential subdivisions should minimize the use of cul-de-sacs, provide for two or more access points and connect to adjacent subdivisions.

c. Glaze Avenue and Elberta Street shall be designed as truck routes thereby permitting truck traffic to be removed from Visalia Road and Firebaugh Avenue. This rerouting of truck traffic will cause trucks to drive around the planning area rather than through it.

Policy 21. Building and non-building improvements designed for and constructed within the planning area should incorporate the design principles that form the foundation of the Southwest Exeter Specific Plan, including connectivity, conservation, context and good urban design.

Actions

a. Design guidelines and development standards will be prepared for residential and commercial development that will be constructed in the planning area.

b. All development design shall be prepared by a licensed architect, landscape architect or engineer.

c. To determine compliance with the design strategies of the Specific Plan, the Planning Commission will evaluate each development using the Specific Plan Evaluation Form.

8. submit project design PLAN to city of exeter for processing through the planning commission and city council. Said plan shall contain information on 11 x 17-inch sheets detailing the following: location of land use types; circulation patterns; infrastructure layout; project phasing; plot plan for each type of residential lot; elevation drawing for each type of residential lot and other types of land uses contained on the project site;
APPENDIX A: SPECIFIC PLAN EVALUATION FORM

and landscaping details for streets and yard areas.
A crucial aspect of the Southwest Exeter Specific Plan is landscaping. It will most likely be the most visible feature in the planning area. To implement the objective of fashioning a conservation-centered plan, it is imperative that the proper selection of plant material by the landscape architect be achieved. This is especially important in the selection of street trees that will line the roadways in the planning area.

Water conservation is another important feature built into the Specific Plan. Drought tolerant plant material reduces the amount of water required in a landscaped area. In the San Joaquin Valley, water is a precious commodity and must be conserved where possible.

Tree selection is the most important landscaping decision that will be made in the planning area. In 1999, the document Tree Guidelines for San Joaquin Valley Communities, was written by E. Gregory McPherson, James R. Simpson, Paula J. Peper and Qingfu Xiao. This document provides a good first step in the proper selection of street trees for the planning area. This Guide provides an excellent introduction about trees that are appropriate for the Valley. The Guide also provides a tree. The Guide’s introduction reads as follows:

"Tree selection is a compromise. There is no perfect tree that matches all the criteria required by specific sites: beautiful flowers and form, deep rooting, drought tolerance, pest/disease resistance, rapid growth, strong branch attachments, low BVOC emissions, and so on. Finding the best tree takes time and study. Collecting information on conditions at the site is the first step. Consider the amount of below- and above-ground space, soil type and irrigation, microclimate, and the type of activities occurring around the tree that will influence its growth and management (e.g., mowing, parking, partying). In most cases, it is too expensive to alter site conditions by making them more suitable for a specific tree species. Instead, it is more practical to identify trees with characteristics that best match the existing site conditions,"
particularly those conditions that will be most limiting to growth.

The matrix in this chapter presents information to assist tree selection. Tree species recommended in general for San Joaquin Valley communities are listed alphabetically by mature tree size category — large, medium, and small.

Information is presented on characteristics influencing selection for energy and water conservation (i.e., solar friendly, deciduous/evergreen, irrigation requirement, growth rate), air quality improvement (ozone-forming potential), and reducing infrastructure conflicts (surface rooting, tidiness, pruning requirement). A general assessment of each tree’s suitability for street, yard, and park locations is also presented.”

Key to the Matrix for the following list of trees for the San Joaquin Valley:
A: Mature tree height (ft.)
B: Mature tree crown spread (ft.)
C: Tree Type: D=deciduous, E=evergreen, S=semi-evergreen
D: Solar friendly trees provide winter solar access as well as summer shade; trees numerically ranked based on crown density, time of leaf drop, time of leaf out, crown area and growth rate.
E: Growth Rate: F=Fast; M=Moderate; S=Slow (Gilman et al. 1996). Note that actual growth rates depend on soils, irrigation, and other factors.
F: Longevity: L=Long (>50 years); M=Medium (25-50 years); S=Short (<25 years) (Gilman et al. 1996).
G: Availability of cultivars (an asset when trees with specific traits are needed to match site conditions, such as upright form, pest resistance, fruitless): Y=Yes; N=No.
H: Resistance to pests and disease: S=pest/disease sensitive; R=resistant; F=free from pests/disease (Gilman et al. 1996).
I: Problems with surface roots: Y=can form large surface roots; O=occasional problem; N=not a problem (Reimer 1996).
J: Contribute to ozone formation (data only available for Los Angeles): H=>10; M=1-10; L=<1 g ozone per day, NDA=no data available (Benjamin and Winer 1998).
K: Other important features that influence tree selection such as irrigation requirement (from Costello and Jones 1992), soil tolerance, tidiness, and pruning requirement (Gilman et al. 1996, Reimer 1996).
L: S- Street=difficult growing conditions, in heavily used areas: median, streetside, commercial plaza, and retail. Y- Yard=less difficult growing
APPENDIX B: SPECIFIC PLAN LANDSCAPING STANDARDS

conditions, less public, sometimes restricted space: residential yard, common areas in residential developments, commercial office. P- Park=less restricted space, public use: parks =, schools, cemeteries, commercial campus/industrial park.

The proper selection of drought tolerant plant material by the landscape architect will insure that the use of water will be minimized and that the plants will be able to survive under the Valley’s summer heat. A shortened list of drought tolerant plant material is as follows:

Perennials, Annuals and Bulbs

- Achillea (Yarrow)
- Alyssum
- Artemisia
- Asclepias (Butterfly Weed)
- Beebalm
- California Poppy
- Campanula carpatica (Bellflower)
- Campis (Trumpet vine)
- Coreopsis
- Cosmos
- Cranesbill Geranium
- Daylily
- Echinacea
- Euphorbia
- Gaillardia
- Goldenrod
- Greek oregano
- Heliopsis
- Hosta
- Iris
- Kniphofia (Red Hot Poker)
- Lamb’s Ears
- Lavender
APPENDIX B: SPECIFIC PLAN LANDSCAPING STANDARDS

- Liatris
- Nastursium
- Nepeta
- Penstemon
- Perovskia (Russian Sage)
- Portulaca
- Rudbeckia
- Salvia nemerosa
- Sedum
- Tradescantia (Spiderwort)
- Veronica
- Zinnia

Grasses
- Feather Reed Grass (Calamagrostis acutiflora)
- Fescue
- Fountain Grass (Pennisetum)
- Maiden Grass (Miscanthus)
- Switch Grass (Panicum)

Shrubs
- Amelanchier (Shadbush)
- Aronia (Chokeberry)
- Buddleia (Butterfly Bush)
- Caryopteris
- Cotoneaster
- Hypericum (St.
Appendix c: residential architectural details

Arts and Crafts Style

(Craftsman)

Roof

1. Low pitch (4:12 or less) with wide overhangs at gable ends and eaves.
2. Rafter ends exposed at select locations (i.e., porches, shed roofs). Where exposed, rafters should be wider than 2”nominal or decorative end-cut.
3. Use deeper fly rafter or barge board with decorative end-cut at gable ends.
4. Use false beams and purlins and/or knee braces at gable ends.
5. Vary roof types on street:
 1/3 Front gable
 1/3 Side gable
 1/3 Cross gable
Appendix c: residential architectural details

6. Use composition shingles with 'shake shingle' or 'slate' look.
7. Decorative dormers should be shed roof (eyebrow) or gable roof of proper scale using the same trim and finish as the house.
8. Gable vents (of front gables) should be horizontal louvers or vertical slats. Triangular shape is preferred, although square is OK.

Porches
1. Full or partial width of front elevation. (Not just at front door.)
2. Supported by tapered square columns or posts of appropriate size.
3. Railing or wall of appropriate material and not too tall.

Chimneys
1. Articulate elevation if on exterior wall.
2. Masonry veneer should match base or have a dark, blended brick look.
3. Top should have a slightly wider termination with cap to screen pre-fab top.
Appendix c: residential architectural details

Windows

1. Should have odd number of sash and decorative muntin detail.

2. Exterior trim should emphasize 'post and beam' motif.

3. Casement or double hung would be most appropriate.

Finish Materials

1. Appropriate wall materials are stucco, panelized shingles, or lap siding. Siding may be 'flared' slightly just above base.

2. Pedestals or column bases should be stucco of masonry veneer.

3. Front door should be from 'Arts and Crafts' series of many door companies.

4. Wall and trim colors should be from "Arts and Crafts' palette.

5. Exposed light fixtures should be A&C style in 'verde' patina or dark bronze.
Spanish Eclectic Style

Roof

1. Low pitched (4:12 or less) with little or no overhang. Interplay roof levels or use circular elements to make more interesting.
2. Use red (or approved blend) tile roofing. Tile may be 'wrapped' over flush gable ends to create a more distinctive style.
3. Gable vents should be red tile 'pipes' in a decorative pattern, circular louvers, or simple decorative pattern in stucco.
Appendix c: residential architectural details

4. Vary roof types on street:
 \[\begin{align*}
 &\frac{1}{4} \text{ Side gable} \\
 &\frac{1}{2} \text{ Cross gable} \\
 &\frac{3}{4} \text{ Hip roof}
 \end{align*}\]

5. Porches can be open roofed or shed roofed with round columns.

Chimneys

1. Chimneys should be simple, smooth, with no sharp corners and should be a good place to express style by using various terminations: 'tile roof' cap, 'clay pot' top, or simple clay flue.

Windows

1. Windows should be casement or hung with a grid pattern to give the appearance of smaller panes. A large focal window with an arched or parabolic top is typical of this style.

Doors

1. The front door should have a heavy 'plank' look with dark hardware.
2. A 'round top' door would be appropriate for the front entry.

Finish Materials

1. Walls should be stucco with prominent arch above door or principal window or beneath porch roof. Front elevation should be asymmetrical.
2. Porch walls could be stucco or stone veneer with cap pieces
3. Stucco colors should be whites, beiges, light tans and browns. Trim colors should be dark greens, browns, or oxide reds.
Appendix c: residential architectural details

Details

1. Any grilles or railings should have a wrought iron appearance. Exposed light fixtures should have a 'lantern' look and a muted or dark finish.
2. Decorative 'hand painted' tiles may be used sparingly as accents at entries, stair risers, or house numbers.
Appendix c: residential architectural details

Fin Wall

Tudor Eclectic Style
(Cottage)

- Decorative Cap
- Steeply-Pitched Roof
- Half-Timbered Gable End
- Articulated Chimney
- Arcaded Fin Wall
- ‘Small pane’ windows with shutters
- Round top ‘plank’ door

Roof

Structural Forms
Appendix c: residential architectural details

1. Roof should be steeply pitched (6:12 or greater) with small overhangs and half-timbered gable ends. Vary with use of Dutch gable. Front Elevation usually dominated by one or more prominent cross gables.

2. Vary roof types on street:
 - 1/2 Side gable
 - 1/2 Cross gable

3. Use composition shingles with 'shake shingle' or 'slate' look.

4. Decorative dormers should be shed roof (eyebrow) or gable roof of proper scale using the same pitch, trim, and finish as the house.

Porches

1. Only at front door or partial width using large wooden posts with braces or stucco arches.

Chimneys

1. Articulate elevation if on exterior wall.
2. Masonry veneer should be brick with a slightly wider termination and a cap to screen pre-fab top.

Windows

1. Windows should be narrow sash in groups of four with grid or diamond pattern muntins. Sliders or casements recommended.
2. Painted shutters can be used as decorative detail.

Doors

1. The front door should have a heavy 'plank' look with dark hardware.
Appendix c: residential architectural details

2. A 'round top' door would be appropriate for the front entry.

Finish Materials

1. Walls should be of stucco. One of the cross gable facades and/or the chimney should have a stone or brick veneer.
2. The face of any front-facing gable should have a half-timbered treatment incorporating the gable vent and/or a 'window'.

Details

1. The second floor of the front elevation should be slightly cantilevered with a supporting 'beam' and brackets.
2. Arcaded fin walls (sometimes with integral gate) should be set back from the front façade.